

Sensing Nitrogen dynamics in spatially and temporally diversified cropping systems

Md Tawhid Hossain¹, Sonoko D. Bellingrath-Kimura^{1,2}, Kathrin Grahmann¹

1. Working Group: Resource-Efficient Cultivation Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg Germany 2. Institute of Agriculture and Horticulture, Division of Land Use Systems, Humboldt University of Berlin, 14195 Berlin, Germany

Introduction

- \succ Proximal and remote sensing technologies have been widely applied to study crop biophysical parameters and soil properties related to nitrogen (N).
- \succ However, tracking soil N is challenging due to its dynamic relationship with soil moisture, crop species and management, and its complex transformation processes taking place at different temporal and spatial scales.

Objectives

- \succ Investigate the relationship among plant N, soil N_{min} (in particular) NO_{3}), N_{tot} and remote sensing data
- \succ Unfold the applicability of very high resolution multispectral imagery for monitoring soil N dynamics in a heterogeneous cropping systems.

Research approach **Study site**

Figure 1: Sampling locations along transect from the edge towards the centre of the patch. Image: UAV mounted Parrot Sequoia + Multispectral Camera 31.05.2021

Workflow

Correlation and multivariate regression (Figure 2) will be conducted find suitable indices using data from field samples, to

- \succ The experiment is conducted at the patchCROP experimental fields in Tempelberg, Brandenburg (Figure 1).
- > A large 70 ha field was divided into 30 smaller fields of ~0.5 ha (72m) x 72m) by considering the small-scale soil heterogeneity, defined as patches (Grahmann et al., 2021).
- \succ Six patches were selected for this study (Table 1).
- \succ Micro-plots(1.8 m²) were implemented as non-fertilized (0-N) and fertilized (+N) along the transect of each patch to catch the spatial heterogeneity (Figure 1)
- \succ Sampling is conducted over three cropping cycles in 2021, 2022 and 2023 (Table 1).

Table 1: arrangements of crops within six patches for consecutive seasons.

Year	Patch 73	Patch 74	Patch 89	Patch 95	Patch 65	Patch 96
20-2021	Rapeseed	W. Wheat	W. Rye	W. Oat		
21-2022	W. Barley	Rapeseed	Sunflower	Maize		
22-2023		W.Barley			Rapeseed	Maize

Collected Data

 \succ Soil (0-30, 30-60, 60-90 cm depth) for N_{min}, N_{tot}, and soil moisture

environmental variables and proximal-remote sensing datasets (Preza Fontes et al., 2019).

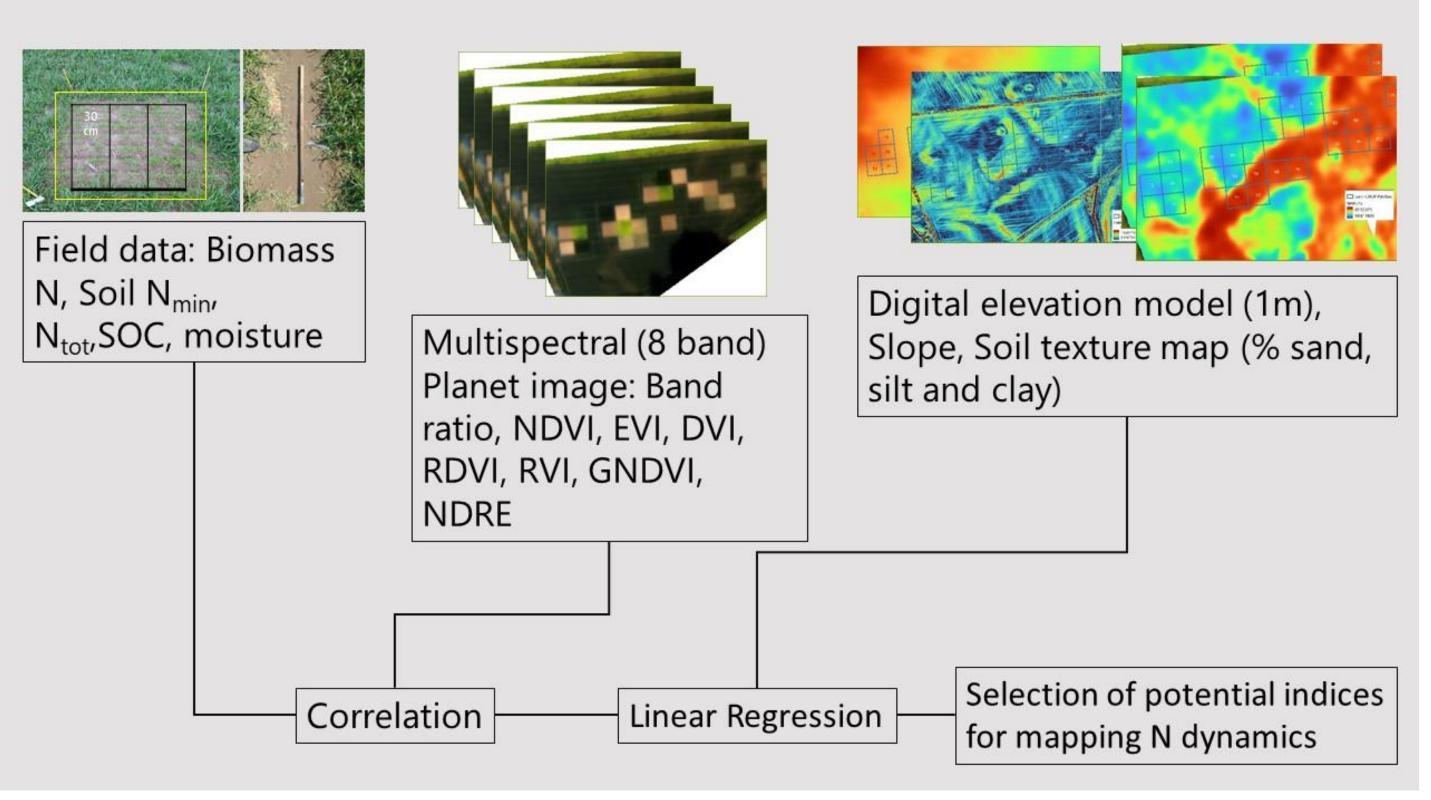


Figure 2: Simple workflow of the proposed study design

Challenges

> Collection of representative samples (biomass, soils), current

> Biomass samples for biomass N and dry matter.

- > Sampling at three different growth stages (stem elongation, flowering and harvest).
- \succ Soil texture (% sand, silt, clay) up to 25cm by GEOPHILUS (Lueck & Ruehlmann 2013).
- > Digital elevation model (1m), Slope and aspect downloaded from https://data.geobasis-bb.de/geobasis/daten/dgm/
- > Multispectral (8 band) 3m Planet imageries covering three seasons

sampling design is limited to 6 points along transect

- \succ Availability of representative satellite imageries matching the field sampling days
- > This study involves 7 crops grown simultaneously in a heterogeneous cropping systems, remote sensing of different crop phenology stages and nitrogen status may impact the correlation to be studied.

Contact person: Md Tawhid Hossain

Leibniz Centre for Agricultural Landscape Research (ZALF) · Eberswalder Straße 84 · 15374 Müncheberg · Germany www.zalf.de · mdtawhid.hossain@zalf.de · +49 1783199467 [phone] · Date: 10-23-2022

References

Grahmann, K., Reckling, M., Hernandez-Ochoa, I., Ewert, F., 2021. An agricultural diversification trial by patchy field arrangements at the landscape level: The landscape living lab "patchCROP." Aspects of Applied Biology, Intercropping for sustainability: Research developments and their application 385–391.

Preza Fontes, G., Bhattarai, R., Christianson, L.E., Pittelkow, C.M., 2019. Combining Environmental Monitoring and Remote Sensing Technologies to Evaluate Cropping System Nitrogen Dynamics at the Field-Scale. Frontiers in Sustainable Food Systems 3, 8. https://doi.org/10.3389/fsufs.2019.00008

