Ecological Indicators 182 (2026) 114593

ECOLOGICAL
INDICATORS

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

ELSEVIER

Scalable computer vision-based assessment of bait lamina sticks to quantify
soil fauna activity

a,” a,b
)

Adrija Roy ™, Lukas Thielemann “, Masahiro Ryo *-”, Juan Camilo Rivera-Palacio
Konlavach Mengsuwan *”, Kathrin Grahmann *

& Leibniz Centre for Agricultural Landscape Research (ZALF), Miincheberg, Germarny
Y Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany

ARTICLE INFO ABSTRACT

Keywords:

Feeding activity
Image analysis
Automated assessment
Biological indicators
Ecosystem functions

Soil fauna plays a critical role in ecosystem functions such as nutrient cycling, organic matter decomposition, and
soil structure maintenance. Accurately assessing their activity is therefore essential for monitoring soil health.
Traditional methods like the bait lamina test, while widely used, rely on manual visual scoring, which can be
subjective, time-consuming, and difficult to scale. In this study, we present an automated computer vision
approach to quantify soil fauna activity by assessing bait consumption on bait lamina sticks, using high-
resolution imagery processed with a Python-based pipeline. We implemented this approach on 159 bait sticks
gathered from field plots in Brandenburg, Germany, and compared the automated findings with assessments
from five independent human operators. The automated method displayed a strong agreement with manual
evaluations, yielding Pearson's r between 0.80 and 0.92, depending on the operator, and Cohen's kappa of 0.48 in
categorical concordance. The Bland-Altman analysis revealed that over 90 % of the automated scores were
within +/— 0.2 of the manual measurements. This automated technique reduced the time required for analysis in
comparison to manual scoring, along with removing operator subjectivity and bias. Although there was an
underestimation in identifying fully consumed bait holes, the average difference between the automated and
manual scores was only 0.02 (p = 0.0049), suggesting a negligible effect size. The automated approach is
straight-forward, reproducible, and flexible, which facilitates the efficient and impartial evaluation of soil fauna
activity for large-scale soil health monitoring. Possible improvements could involve enhancing the image-
analysis workflow, such as improving hole-detection robustness, reducing sensitivity to coating or lighting
variation, and exploring more advanced classification models.

1. Introduction structural parameters and biochemical processes is key to assessing soil
health (Franciska T. de Vries et al., 2013).

Evaluating soil health is essential for sustainable agriculture and Von Torne Von (1990) introduced the bait lamina test (BLT) as a

ecosystem management, as soil biological processes directly influence
nutrient cycling, organic matter decomposition, and plant productivity
(van der Heijden and Wagg, 2013). Among many indicators of soil
health, the activity of soil mesofauna, such as collembolans, mites, and
enchytraeids or soil macrofauna, especially earthworms, serves as a
sensitive proxy, reflecting both the current state and resilience of the soil
ecosystem (Ritz et al., 2009; Bardgett and van der Putten, 2014). Meso-
and macrofauna are principle drivers of litter breakdown and microbial
interactions, and their activity has been shown to respond rapidly to
changes in land management, pollution, and climate conditions
(Brussaard et al., 2007). Quantifying how biological activity affects soil
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rapid and straightforward method for the visual assessment of plant
debris consumption by soil organisms. Detailed descriptions of the BLT
can be found in other sources (ISO, 2016). In essence, the method in-
volves filling holes in PVC strips with bait material made from cellulose
and plant material (such as wheat bran or nettle leaf powder) and then
inserting the strips in soil for a certain period, depending on the feeding
activity. After exposure, an operator visually counts the number of
pierced holes, providing a measure of feeding activity of soil fauna. Due
to its simplicity, the BLT has been widely utilized for soil health
assessment, particularly to evaluate the impacts of land use and man-
agement changes in agroecosystems (Larink and Sommer, 2002; Forster
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et al., 2015; Rombke et al., 2017), including pesticide or fertilizer
application in agricultural systems (Birkhofer et al., 2022). Beyond
agroecosystems, the BLT has also been applied in other fields, such as
soil pollution (Filzek et al., 2004; André et al., 2009; Vorobeichik and
Bergman, 2020), ecotoxicological testing (Jansch et al., 2006; Bart et al.,
2018) and assessment of ionizing radiation (Beresford et al., 2022), fire
impacts (Musso et al., 2014; Podgaiski et al., 2014), forest fragmentation
(Simpson et al., 2012), urbanization (Bergman et al., 2017), and plant
invasion (Pehle and Schirmel, 2015).

Although the traditional approach of visually assessing the BLT has
been widely applied and accepted as a standard practice to quantify soil
fauna activity (ISO, 2016), it comes with several limitations. The most
critical issue is operator variability: different assessors may interpret
bait consumption inconsistently, which introduces subjectivity and af-
fects comparability across studies (Eisenhauer et al., 2014). A second
challenge is the coarse scoring scales commonly used in manual
assessment, typically two classes (any or no consumption) or three
classes (total, medium or no consumption), which limits resolution and
reduces the accuracy of derived activity measures (Vorobeichik and
Bergman, 2021). Finally, manual scoring is relatively more time-
consuming and labor-intensive, as each stick must be inspected hole
by hole. Different existing manual scoring systems thresholds are shown
in Table 1.

To address the limitations of manual bait lamina evaluation, this
study aims to develop and validate an automated, impartial, and scal-
able method to assess bait lamina consumption using computer vision.
We present a reproducible Python-based image analysis pipeline that
detects and quantifies feeding activity on bait lamina sticks from high-
resolution images.

The specific objectives of this study are to:

(1) develop a computer vision workflow to automatically assess bait
lamina feeding activity;

(2) evaluate the accuracy and reliability of the automated scoring
method compared to visual assessments; and.

(3) assess the potential of this method for large-scale, high-
throughput soil biological activity monitoring.

We hypothesize that the automated approach will yield results
comparable to manual scoring while reducing subjectivity and
improving scalability. This tool is intended to support standardized,
reproducible soil fauna monitoring in both ecological and agricultural
research.

Table 1
Comparison of bait lamina scoring systems with examples from the literature.

Scoring Manual Classification
2-point 3-point 5-point
(Torne Von, (ISO 18311, ((Thakur ((Bergman et al.,
1990) 2016) et al.,, 2018; 2017;
Siebert et al., Vorobeichik and
2019) Manual Bergman, 2021,
scoring in this 2023)
study
0 Bait is not Consumption of Filled Bait untouched
perforated the bait by less
than half
0.25 ~ 25 % hole area
is empty
0.5 Partly empty ~ 50 % hole area
is empty
0.75 ~ 75 % hole area
is empty
1 Bait is Consumption of Empty No bait left
perforated to  the bait by at
any extent least half
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2. Materials and methods
2.1. Site description and field nstallation

As the scope of this study focuses on the verification of a new eval-
uation method, the experimental site is only described briefly: The data
collection took place in 2024 in the patchCROP landscape laboratory.
The experimental site is located in Brandenburg (52.4426°N,
14.1607°E) and characterized by heterogeneous, sandy soils due to
historic glaciation events, displaying cambisol, luvisol, and truncated
luvisol soil types (Herndandez-Ochoa et al., 2025). The long-term annual
mean temperature from 1980 to 2010 was 9.2 °C, while the average
annual rainfall was 568 mm, ranging from 373 to 774 mm. For context
on field conditions during sampling, refer to Appendix A and Fig. Al in
Appendix, which shows the daily precipitation, temperature, and volu-
metric soil moisture in two selected plots.

The bait lamina sticks (Terra Protecta GmbH, Berlin, Germany) used
in this study measure 120 mm x 6 mm x 1 mm and contain 16 circular
perforations (diameter 1.5 mm) spaced at 5 mm intervals, starting at 5
mm from the insertion tip. The sticks had either gray or white color,
varying with purchased batches. The perforations are filled with a
standardized bait mixture, that was prepared using 70 % cellulose
powder, 27 % finely ground and sieved wheat bran and 3 % charcoal and
water to produce a paste-like consistency. To ensure a complete filling in
each of the 16 perforations, 4-6 rounds of drying and refilling were
conducted to close drying gaps and cracks.

Bait lamina sticks were placed in summer 2024 in plots of grain
maize (Fig. A2) that captured a gradient in both soil texture and man-
agement practices (Table A1l in Appendix). Specifically, plots ranged in
sand content (63-67 % to 80-83 %; sandy loams to loamy sands) and
weed control strategies (chemical vs. mechanical weed control). This
gradient allowed us to evaluate whether the automated classification
and detection algorithms remained accurate and consistent despite dif-
ferences in soil background or bait stick color, which can affect image
analysis. Activity was checked regularly using test sticks and all sticks
were removed after 21 days and individually wrapped in aluminum foil
for transport. The exposure period lies in between the ones reported for
other studies on similar soils in Brandenburg of 14 days on grassland
(Birkhofer et al., 2022) and 28 days on arable soils (Joschko et al., 2008;
Birkhofer et al., 2022). After field retrieval, the bait sticks were often
covered with adhered soil particles. In the laboratory, the sticks were
cleaned using moistened paper towels to remove soil particles that might
obscure bait consumption. Any residual soil within the perforations was
gently dislodged using needles and brushes to prepare them for the
manual and automated evaluation. This cleaning step was essential to
prevent false pixel detection in the automated algorithm, as soil specks
can mimic bait consumption.

Five operators (M1-M5) independently evaluated all bait lamina
strips from the same set of images. Operators M1 and M5 were authors of
this paper, and M2, M3 and M4 were graduate students assisting in data
evaluation. None of the operators, except M5, had prior experience with
the bait lamina method or formal training in soil ecology. This compo-
sition was chosen to represent typical variability among non-expert
users performing routine assessments. Operators visually inspected
each perforation and assigned one of the 3 categories: full activity,
partial activity, and no activity with activities assigned as 100 %, 50 %
and 0 %.

2.2. Image acquisition and preprocessing

To digitize the bait lamina sticks for automated analysis, we devel-
oped a controlled imaging setup using a mounted Android smartphone
camera positioned perpendicular above a grid-lined A4 background
(Appendix Fig. A3). Images were captured using a smartphone (Android
13, 16 MP rear camera, f/1.8 aperture). All Al-based enhancements
(HDR, scene optimizer, auto-beautification) were disabled to avoid pixel
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interpolation or sharpening artifacts. The sticks were placed in a fixed 8-
stick arrangement per image, with each stick spaced equally. This
arrangement ensured consistent orientation across samples and mini-
mized parallax distortions. The camera was positioned 21 cm above the
surface, and images were captured under diffuse lighting provided by a
custom light table, enhancing contrast across both gray and white bait
stick variants (Appendix Fig. A4).

Every image was converted to grayscale via OpenCV's cvtColor,
which implements the standard 0.299 R + 0.587 G + 0.114 B formula
(Gonzalez and Woods, 2017) a process that reduces a color image to
shades of gray based on luminance, thereby simplifying analysis.
Gaussian blurring was applied to minimize background noise by
smoothing the image, using a Gaussian kernel to suppress high-
frequency variations (Flusser et al., 2016; Bergstrom et al., 2023). The
Hough Circle Transform, a feature extraction technique commonly used
in computer vision for detecting circular shapes (Kierkegaard, 1992;
Kerbyson and Atherton, 1995; Li and Wu, 2020), was then employed to
identify perforations. Finally, the pixel intensity histograms inside each
detected hole were analyzed to quantify grayscale variation, which can
indicate levels of material removal or activity inside the perforations.
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Feeding intensity was then quantified for each detected circle by
computing the percentage of white (background) pixels within its area.

2.3. Pipeline steps

The automation workflow (Fig. 1) consisted of two sequential scripts
developed in Python using the OpenCV, NumPy, and PIL libraries. The
pipeline is explained in subsequent subsections and is available in
GitHub (https://github.com/Adrijal/baitstick-analysis).

2.3.1. Strip extraction and background classification

High-resolution JPEG images were cropped to isolate the sticks and
then split into eight vertical strips, each representing one bait lamina
stick. For each strip, the mean grayscale pixel intensity was calculated to
classify background color. Strips with mean intensity above 190 were
assigned as white background, and those at or below 190 as gray. This
classification, based on the distribution of grayscale values in our im-
aging setup, ensured consistent separation of stick types and informed
the parameter settings used in subsequent image processing steps, such
as circle detection. This threshold may require adjustment under

Image Acquisition

Initial Preprocessing

Strip Extraction

Capture high-resolution
image of bait sticks

Crop image to focus on
area of interest

Divide cropped image into
vertical strips

[ A

Camera position, Pixel coordinates Number of strips,
lighting, resolution for cropping extent width calculation
Image Blurring J }';l‘“l‘fl”,“m’ P
\ ‘ Classification ) \\
' ¢ -
Kemnel size (9 x 9 px). Naming/labeling ‘ Intensity threshold
sigma (white:2.0, gray:2.2) structure | (190)
N - /
N

Hole Detection
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Transform
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Fig. 1. Workflow diagram of the automated bait lamina sticks analysis pipeline. Each step indicates key parameters or decisions that can be fine-tuned, such as

intensity thresholds, blur settings, and classification criteria.
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different lighting conditions or camera settings. Background classifica-
tion also determined the parameter settings for subsequent image pro-
cessing: white and gray sticks required different levels of contrast
enhancement and circle sensitivity during Hough Circle detection. The
individual strip images were then automatically organized into struc-
tured subfolders, labeled according to the original image and segment
number.

2.3.2. Hole detection via hough transform

Each strip image underwent analysis using a computer vision pipe-
line that initiated with adaptive Gaussian blurring, where the parame-
ters for kernel size and blur intensity were tailored according to the
strip's background tone (either white or gray) to improve contrast and
reduce noise. We used a Gaussian filter (OpenCV's GaussianBlur) using a
9 x 9 px kernel. The standard deviation (c) was set to 2.0. These values
were chosen empirically to provide optimal noise reduction and edge
enhancement in our dataset but may require fine-tuning for other image
conditions or different bait stick colors. Next, the Hough Circle Trans-
form was utilized to identify circular perforations that correspond to the
bait-filled holes. Detection was performed with OpenCV's HoughCircles
(HOUGH_GRADIENT), applying the parameters shown in Table A2 in
the Appendix.

Each bait lamina hole is biconical, with an inner diameter of
approximately 1.5 mm and an outer diameter of 2 mm. The segmenta-
tion algorithm detects the visible outer contour of each hole in the
image, corresponding to the 2 mm outer diameter. Although the bait
lamina design is nominally standardized, we observed deviations in both
hole alignment and diameter across strips, likely due to manufacturing
variability. Fixed-position or fixed-radius approaches were tested but
led to frequent missed detections when holes were slightly displaced or
noncircular. For this reason, the adaptive circle-detection step was used
to locate the actual hole boundaries in each image, which improved
robustness across heterogeneous strip batches and imaging angles.

2.3.3. Pixel-intensity thresholding & consumption-level assignment

For every identified circle, the pixel intensity in that area was
examined to determine the proportion of white (unconsumed bait)
pixels. To binarize holes against the background, we applied a threshold
equal to the mean gray-level of each strip minus 40 intensity units. In
practice, this dynamic threshold typically equates to approximately 220
for white-stick images and about 170 for gray-stick images. The value of
40 units was selected to maximize the separation between bait and
background pixels based on visual inspection of image histograms.
Nevertheless, these values should be regarded as starting points and may
need to be adjusted for optimal performance in different imaging envi-
ronments. Annotated images were saved with overlaid circles and
labeled percentage of feeding activity.

2.4. Activity assessment

The percentage of whitened pixels within the circular mask repre-
sents the proportion of bait removed and yields a continuous eaten
fraction between 0 and 1. Strip-level activity was calculated as the
average of these per-hole fractions. This value is used as the primary
automated indicator of feeding activity.

For scoring the activity fraction from manual method, the simplified
common three-point classification system was used, with medians
assigned as follows: 0 % for No activity, 50 % for Partial, 100 % for Full
activity.

The activity for a strip was then computed as:

3
Sonm

i=1

ACﬁVityﬁac = T

where n; is the number of holes in class i, m; is the median activity
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fraction of that class, and N is 16, number of holes in the strip.

2.5. Validation metrics

All statistical analyses were conducted in Python 3.10 using NumPy
1.23 and SciPy 1.9, with auxiliary routines from scikit-learn 1.2 and
statsmodels 0.14. A two-sided significance threshold of o = 0.05 was
applied throughout. To control the family-wise error rate across multiple
Pearson correlations and paired t-tests, p-values were adjusted using the
Bonferroni method. Sample sizes are reported alongside each test. A
summary of applied tests and tools is provided in Table 2.

In addition to these metrics, we evaluated the agreement between
the automated and manual assessments using a set of complementary
validation tests. The automated continuous feeding-activity fraction was
compared against each operator's assessment and against the manual
consensus (mean of the operators). Agreement was quantified using
Pearson correlation, mean absolute error (MAE), and root mean square
error (RMSE), Deming regression, and Bland-Altman analysis. For
completeness, we also derived categorical classes (no, partial, full
feeding) from the continuous per-hole percentages using 5 % and 95 %
as thresholds and computed the corresponding confusion matrix to
compare automated and manual classifications. Practical equivalence
was tested using a two-one-sided (TOST) procedure with a tolerance of
+1/16 of a hole (=6 %). Intra-operators reproducibility was assessed
separately using intraclass correlation coefficients ICC(2,1) and ICC
3,1.

2.6. Computational reproducibility assessment

To evaluate the numerical stability of the hole-based continuous
activity metric, we analyzed a subset of 25 representative strip images.
To mimic small but realistic changes in image acquisition, we generated
a perturbed version of each strip by combining a 0.5° rotation, a 1-pixel
translation, and a 5 % global increase in brightness. The same pipeline

Table 2
Summary of statistical tests, their purposes, software implementations, and
sample sizes.

Test Purpose Software / Library Sample size
()
Mean Quantify average Python 3.10, scikit-learn 159 strips
Absolute absolute deviation
Error between methods
(MAE)
Root Mean Quantify error Python 3.10, scikit-learn
Square magnitude with (mean_squared_error)
Error higher penalty on
(RMSE) larger deviations
ICC (2,1) Assess Python 3.10 (ICC 159 strips
reproducibility routine; two-way
(absolute agreement) random effects)
ICC (3,1) Assess reliability Python 3.10 (ICC 159 strips
(consistency) routine; two-way mixed
effects)
Pearson's r Assess linear Python 3.10, SciPy 1.9 159 strips
agreement in activity ~ (pearsonr)
fractions
Cohen's k Quantify categorical Python 3.10, scikit-learn 2528 hole
agreement (No/ 1.2 (cohen _kappa_score) observations
Partial/Full feeding)
Bland- Evaluate bias and 95 Python 3.10, statsmodels 159 strips
Altman % limits of 0.14
analysis agreement
Deming Model systematic Python 3.10, statsmodels 159 strips
regression bias between 0.14
methods
Paired t-test Test for mean Python 3.10, SciPy 1.9 159 paired
differences in (ttest_rel) strips

continuous and
categorical scores
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was rerun on these perturbed images, and agreement between original
and perturbed activity scores was quantified using Pearson correlation,
Bland-Altman analysis, and a two-way mixed-effects intraclass correla-
tion ICC(3,1).

2.7. Processing workflow and time accounting

To quantify the total time requirement for both approaches, each
stage from strip cleaning to final data export was recorded. For both
workflows, cleaning soil residues from each bait stick required approx-
imately 40 s. The manual method then involved around 30 s per stick for
visual assessment under a lamp and 10 s for recording the scores in a
spreadsheet.

For the automated workflow, the cleaned sticks were arranged on an
A4 sheet (8 per frame; = 40 s per photo), the frame was positioned under
the camera (=~ 10 s), and the image was captured and manually checked
for brightness and visibility (=~ 20 s per photo). Batch processing and
result export through the Python pipeline required ~ 10 min of unat-
tended computation. Overall, the total operator time for evaluation of
~160 strips was reduced from about 3.5 h in the manual workflow to
approximately 2 h in the automated one.

3. Results

We performed a stepwise validation process that included both
human evaluators (operators) and the automated method to quantify
precision and consistency of the automated bait lamina analysis
pipeline.

3.1. Inter-operator agreement

Five operators (M1, M2, M3, M4 and M5) evaluated bait lamina
strips independently using a three-point classification system: no activ-
ity, partial activity, and full activity. The operators exhibited strong
agreement in their classification of bait lamina feeding activity but vi-
sual comparison of activity fractions across plots revealed observable
inter-operator variability (Fig. 2). In some plots, such as Plot 3 and Plot
10, the interquartile ranges differ notably among operators, with M2
frequently showing larger variance. Subjectivity in interpreting bait
removal likely arises from differences in lighting conditions, bait color
contrast, or perceptual thresholds for classifying full vs. partial feeding.
Discrepancies were particularly evident in strips with high feeding
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activity, where differentiating between near-complete and fully
consumed bait is inherently ambiguous. Such inconsistencies attest the
risk for bias in manual scoring and reinforce the need for standardized
protocols or automated methods to improve consistency and reliability.
Pairwise Pearson correlation analysis indicated strong agreement,
except for M2 (r ranging between 0.84 and 0.86) (Fig. 3f). The inter-
operator consistency across the operators was high, with ICC(2,1) =
0.88 and ICC(3,1) = 0.90.

3.2. Agreement between manual and automated methods

The automated pipeline was validated by comparing its output to
operator assessments. First, we compared the strip-wise average activity
fractions derived from both, the manual method per operator and the
automated pipeline. Across 159 bait lamina strips, the automated ac-
tivity fraction showed strong linear agreement with the operators
(Fig. 3f). The correlations were highest for M3 (r = 0.92), followed by
M4 and M5 (r = 0.91). The automated estimate also aligned well with
the manual consensus (r = 0.92). These relationships were reflected in
the corresponding error metrics. Overall, the automated activity fraction
closely tracked manual scoring patterns across strips, with strongest
agreement for operators whose scoring distributions most closely
matched the consensus. One operator showed a systematic tendency
toward higher activity, which contributed to increased deviation from
the automated estimates. Full agreement statistics are provided in
Table 3.

To allow direct comparison with the standard bait lamina scoring
system, the continuous per-home percentages were converted into 3
categorical counts (no feeding, partial feeding, full feeding) by applying
fixed thresholds. Holes with <5 % white pixels were assigned as no ac-
tivity, holes with >95 % white pixels as full activity, and all intermediate
values (>5 % and < 95 %) as partial activity. These categories are only
used for agreement testing with the manual method and are not involved
in computing the automated activity fraction. Fig. A5 in Appendix shows
correlation matrices for counts of different classes between operators
and automated methods. The No-activity class shows the highest con-
sistency among all operators (r ~ 0.94-0.99), reflecting its relatively
unambiguous visual signature. Full-activity counts also show high
agreement across most operators (r ~ 0.82-0.94), with the automated
method correlating moderately to strongly with operators. As holes in
No and Full classes are visually unambiguous, their counts vary
consistently between operators, resulting in higher correlations. In
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Table 3
Summary of agreement metrics between the automated feeding-activity estimates and the five operators (M1-M5), along with the manual consensus.
Operator Pearson r MAE RMSE Deming slope Intercept Mean bias Accuracy
M1 0.87 0.08 0.11 0.98 +0.07 +0.06 0.81
M2 0.80 0.36 0.40 1.28 +0.13 +0.36 0.62
M3 0.92 0.13 0.18 1.28 —0.11 +0.12 0.84
M4 0.91 0.14 0.19 1.29 -0.10 +0.13 0.83
M5 0.91 0.15 0.20 1.27 —0.09 +0.14 0.79
Consensus 0.90 0.16 0.19 1.13 —0.02 +0.18 0.74

contrast, almost all borderline judgments fall into the Partial class, so
even small scoring differences accumulate there, leading to lower cor-
relations for Partial despite the additive constraint.

In this part of the analysis, we shift from hole-level classifications to
the activity class assigned to the entire strip. Examining the calculated
activity of entire strips, most of them fell into the partial activity cate-
gory, and none was under full activity (Fig. A6 in Appendix). Using M1
as reference, manual scoring yielded 68 partial activity, 90 no activity,
and 1 full activity strip. In contrast, the automated method assigned 107
partial and 51 no-activity classifications. Agreement was obtained for 66
partial-activity cases and 49 no-activity cases, with remaining mis-
matches concentrated at the partial/no-activity boundary. Overall ac-
curacy was 0.81, and Cohen's k was 0.48, indicating moderate
agreement once the continuous values are collapsed into discrete cate-
gories. The remaining operators showed the same qualitative pattern but
with lower agreement. M3 provided the closest categorical match
among them (x = 0.21, accuracy = 0.48), followed by M5 (x = 0.19,
accuracy = 0.45), and M4 (x = 0.19, accuracy = 0.44). M2 showed the

weakest categorical alignment (k = 0.13, accuracy = 0.47). In all cases,
the disagreements arose almost entirely from strips whose activity
fraction lay close to the 5 % threshold: small shifts in the underlying
continuous value were enough to move a strip from “partial” to “no
activity,” creating categorical mismatches that do not reflect large dif-
ferences. Representative cases of mismatches between manual and
automated classifications, including missed holes and false positives, are
shown in Fig. A7 (Appendix).

3.3. Bias and systematic deviation

To characterize operator-specific biases in the strip-wise activity
fractions, we examined the signed difference distributions (manual -
automated) for each operator (Fig. 4a—e). All five histograms are
approximately unimodal and roughly symmetric, but they differ in
location and spread. M1 (Fig. 4a) shows a relatively narrow distribution
centered close to zero, in line with its near-unity Deming slope and
minimal intercept. M2 (Fig. 4b) is clearly right-shifted, indicating that
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Fig. 4. (a - e): Histograms of the difference distributions, with kernel density overlays, illustrating the spread and skew of manual-automated deviations for op-

erators M1 to M5, respectively.

this operator systematically assigns higher activity than the automated
pipeline, consistent with its strong proportional bias (slope ~ 1.28). M3
(Fig. 4c) also shows a positive shift and a wider spread, reflecting scaling
differences suggested by its Deming slope (= 1.28). M4 (Fig. 4d) exhibits
a modest positive shift with moderate dispersion, indicating a lower but
still consistent overestimation. M5 (Fig. 4e) again clusters close to zero
with only a slight right shift, suggesting small but systematic deviations.
These histograms, together with the regression results, confirm that the
deviations between methods are not random noise but reflect operator-
specific tendencies in the interpretation of feeding activity.

Fig. 5 presents a detailed method comparison between the auto-
mated pipeline and manual scoring by operator M1 across different
levels of faunal feeding activity. Bland-Altman analysis was carried out
using M1 as the reference method to quantify fixed bias and the 95 %
limits of agreement (LOA) between manual scoring and the automated
activity fraction. Panels (a-c) show Bland-Altman plots for partial, no,
and full activity categories, respectively. The differences between
methods are mostly centered around zero with relatively narrow limits
of agreement for partial (a) and no activity (b), indicating strong
concordance in those classes. In contrast, the full activity plot (c) dis-
plays a larger positive bias, suggesting that the automated method tends
to underestimate the number of fully eaten holes, likely due to image
contrast or classification thresholds. Fig. 5d shows the Bland-Altman
analysis for total activity fraction; it illustrates a small positive mean
bias of 0.02, with LOA spanning from —0.15 to 0.19. This narrow range
indicates that the automated pipeline deviates only minimally from the
operator's assessments and remains within the expected variability of a
human operator. The BA plot for activity fractions computed from the
automated method and the mean of 5 operators is shown in Fig. A8 in
Appendix. The analyses showed minimal fixed bias (mean difference =
+0.02). The limits of agreement ranged from —0.24 to 4+-0.20, indicating
that most strip-level deviations fell within a narrow band of +0.2 ac-
tivity units.

A summary of agreement metrics between the automated feeding-
activity estimates and the five operators (M1-M5), along with the

manual consensus, is given in Table 3. Pearson's r quantifies linear as-
sociation, MAE and RMSE represent strip-wise error relative to manual
scores, and Deming regression provides proportional and additive bias
terms while accounting for uncertainty in both measurements. Mean
bias reflects the average manual-automated difference in activity frac-
tion. Accuracy refers to categorical agreement based on the thresholds
(5 % / 95 %). Together, these metrics show that M3 and M4 align most
closely with the automated pipeline, M1 displays minimal proportional
bias, and M2 consistently assigns higher activity levels than both the
automated method and the other human operators. The consensus be-
haves as an intermediate reference, moderating individual operator
tendencies.

In addition to the pairwise Deming regressions presented earlier, a
consensus-level Deming regression was computed between the auto-
mated feeding-activity fraction and the mean of the operators (M1-M5)
to assess proportional agreement with the collective human reference
(Fig. 5e). The resulting slope was 1.13 with a small negative intercept
(—0.02), indicating a mild proportional deviation. As activity increases,
the consensus score rises more steeply than the automated estimate. This
behavior reflects the influence of M2, M3, and M4, who showed strong
positive proportional bias individually, on the consensus distribution.

To assess whether the automated scores were practically indistin-
guishable from manual scoring, we applied a two one-sided test (TOST)
with equivalence bounds of +1/16 of a hole (+0.0625 activity units).
Using the continuous strip-wise activity fraction, the differences be-
tween the automated method and operators M3, M4, and M5 were sta-
tistically equivalent within this tolerance (p_TOST <0.001 in all cases;
mean differences 0.003-0.027, 90 % CIs fully within +0.0625). The
automated scores were also equivalent to the consensus of all five op-
erators (mean difference — 0.021, 90 % CI [—-0.036, —0.006], p_TOST =
3.8 x107%.In contrast, the deviations relative to M1 (mean difference
0.067, 90 % CI [0.050, 0.083], p_.TOST = 0.66) and especially M2
(—0.215, 90 % CI [-0.235, —0.194], p_TOST = 1.00) exceeded the
predefined equivalence bounds and were therefore not considered
practically equivalent. To determine whether the automated pipeline
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deviates systematically from the reference operator (M1), paired t-tests
were conducted on two key metrics with 159 paired observations: the
continuous total activity fraction and the discrete categorical score (0 =
no feeding, 1 = partial, 2 = full). For the total activity fraction, M1's
mean strip-wise activity was 0.226 (standard deviation [SD] = 0.095),
where SD quantifies the typical deviation of individual strip measure-
ments from the mean, compared with 0.206 (SD = 0.093) from the
automated method. The mean difference of 0.020 (SD of the paired
differences = 0.089) was statistically significant, t(158) = 2.85, p =
0.0049. Cohen's d (the mean difference divided by the standard devia-
tion of the differences) was 0.23, indicating a small effect size. The
comparison between automated and manual consensus scoring is sum-
marized in Table A3 in the Appendix.

3.4. Plot- and strip-level patterns

Fig. 6 illustrates the per-strip feeding category assigned by each
operator alongside the automated pipeline for a representative subset of
ten plots. Fig. 6 reveals that, at the level of individual plots, the auto-
mated pipeline consistently falls within the range of human scoring
rather than producing anomalous classification. In more variable plots,
the blue trace follows the same within-plot fluctuations captured by at
least one operator. This pattern holds across plots exhibiting minimal
feeding, where the pipeline's blue circles cluster tightly with human “No
feeding” observations, as well as in plots with more variable or

intermediate activity, where blue trace the same subtle within-plot
fluctuations captured by the operators.

Moreover, this agreement is remarkably uniform across a diverse set
of field conditions and plots. Whether examining highly homogeneous
plots (e.g., Plot_7) or those with pronounced heterogeneity (e.g., Plot_3,
Plot_4), the pipeline's classifications remain anchored within the human-
judged range. Such strip-level agreement underscores the robustness of
the image-analysis workflow. It reliably reproduces the spectrum of
manual scorings while eliminating instances of complete operator
consensus divergence.

3.5. Computational reproducibility assessment

The strip-wise activity scores of the perturbed images showed a clear
1:1 relationship between the original and perturbed outputs (Fig. 7a),
with a strong Pearson correlation (r = 0.92) and a two-way mixed-effects
intraclass correlation ICC(3,1) of 0.92. Differences between paired
measurements were generally small: the mean shift was 0.006 activity
units on the 0-1 scale, and the Bland-Altman analysis indicated limits of
agreement from —0.19 to +0.21 (Fig. 7b). The spread reflects expected
sensitivity of circle detection to slight changes in alignment and
brightness, but the overall pattern of strip-level activity is preserved.
These results confirm that the automated extraction of continuous
feeding activity is numerically stable under realistic perturbations in
image acquisition.
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4. Discussion
4.1. Advantages of automated workflow over manual scoring

This study revealed inconsistencies across operators for bait stick
evaluation, indicating the importance of developing a clear, easy-to-
follow observation protocol. Operator inconsistency in evaluating bait
sticks was also reported by Eisenhauer et al. (2014) and is a common
issue in environmental and ecological monitoring (Schmidt et al., 2023;
Rivera-Palacio et al., 2025). Rivera-Palacio et al. (2025) identified that
whether an operator follows the monitoring protocol or not can affect
the agreement between human operators and computer vision-based
observations by the degree of R?> = 30 %. Identifying the highest
agreement between a certain operator and a computer vision-based
model necessarily guarantees neither the operator nor model. Manual
classification of bait sticks is inherently subjective and may misclassify
perforations as fully consumed even when minimal bait remains. Several
annotated image snapshots illustrate the results produced by the auto-
mated system (Fig. 8). Unlike previous approaches that acknowledge
variability in manual scoring as a methodological limitation, this study
seeks to minimize that subjectivity through algorithmic standardization.

This research demonstrated that a computer vision-based system can
successfully automate the evaluation of bait lamina stick consumption,
providing a practical and scalable indicator of soil fauna activity. The
strong correlation between automated findings and manual assessments
confirms the method's reliability in capturing ecologically significant
feeding behaviors. When all preparatory and handling steps are
included, manual processing of 159 bait lamina strips requires roughly
3.5 h of operator time. In contrast, automated workflow, including
arrangement, camera setup, and image quality check, requires about 2 h
of active work and 10 min of unattended computation. This corresponds
to about 40 % reduction in human effort. However, it should be noted
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that this time saving only accounts for the evaluation of the strips after
the exposure. As the manual filling of the sticks is by far more time
consuming than the evaluation and this step remains the same, the time
saving needs to be seen in this context.

4.2. Limitations of automated workflow

The automated pipeline showed limitations in accurately identifying
perforations that were completely eaten and thus, an overall underes-
timation in activity fraction is observed. This difference may arise from
both the limitations of the reference method itself and imperfections in
the algorithm. Visual scoring, although the accepted ISO 18311 stan-
dard, introduces observer-dependent variation that cannot be elimi-
nated entirely (Eisenhauer et al., 2014). This variability is also evident in
our dataset. A further limitation is that, despite expanding to five
scorers, the manual reference remains constrained by the limited pool of
available trained operators, which prevents constructing the larger fre-
quency distributions that would be required to fully characterize the
variability of the standard method.

Shadow cast on the border between outer and inner diameter of the
perforations, especially on slightly bent sticks where the angle to the
light source changes, could be one reason for the underestimation of
fully eaten holes. Improvements here could increase the accuracy for
sticks with high activities. However, heterogeneity in observation has to
be considered as a non-negligible error source that must be addressed
independently from model performance (Rivera-Palacio et al., 2025).
The analysis of cumulative agreements demonstrates that more than 90
% of automated scores are within +0.2 of the manual reference.
Agreement remained high across all validation metrics, with
continuous-score correlations up to r = 0.92 and categorical agreement
accuracies up to 84 %, indicating that the method has promising po-
tential toward establishing a generally applicable workflow. However, it
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is important to recognize the trade-off between automation and inter-
pretation details. In studies where accuracy in the classification of
completely consumed bait is essential, it may still be necessary to
implement additional correction measures or conduct human assess-
ment. A further limitation is that the current workflow reports only total
consumption per hole and does not capture the vertical position of
feeding along the strip, even though depth-specific patterns can carry
important ecological information.

4.3. Future directions and methodological improvements

It is noteworthy that the tasks we performed can also be done using
deep learning-based predictive modeling (e.g. quantifying the number of
holes and weighted activity score). While deep learning models could
potentially outperform our approach, the proposed method offers key
advantages: transparency, tunability, and computational efficiency.
Each processing step from image acquisition to parameter tuning can be
explicitly observed, controlled, and corrected, allowing domain experts
to guarantee the outcome's quality. Without advanced programming
skills, one can manually adjust settings such as color thresholds or
reflectance parameters in response to context-specific variations. This
procedural transparency is particularly important for trustworthy
monitoring outcomes. For instance, Hough Transform has been imple-
mented in real-time applications for decades (Mukhopadhyay and
Chaudhuri, 2015). Moreover, the proposed method is algorithmically
lightweight and fast, making it suitable for low-power on-site device
deployment compared to deep learning.

Recognizing these strengths, we also see the potential of deep
learning for future applications. For instance, zero-shot learning, few-
shot learning and foundation model do not require a large number of
training data: e.g. SAM for image segmentation (Kirillov et al., 2023); T-
Rex for object counting by visual prompting (Jiang et al., 2023), and;
Grounding DINO for object detection with text-based prompting (Ren
et al., 2024). They may ultimately outperform the proposed method in
terms of accuracy and widespread applicability as these approaches may
not require programming skills (Mengsuwan et al., 2024). Still, their
black-box nature makes it difficult to trace errors or manually tune the
model when systematic error occurs. Direct method comparisons should
be a focus for future studies, though they are beyond the scope of this
paper.

Although weighing the remaining bait could, in principle, provide a
physical measure of consumption, this is currently not feasible for hole-
level validation. Even whole-strip mass measurements would lose the
resolution that makes the BLT valuable. Consequently, visual scoring
remains the established reference standard (ISO, 2016), against which
new analytical approaches, including computer vision, should be eval-
uated. Future work could additionally explore integrating textile-dyed
bait substrates (Eisenhauer et al., 2014), which offer improved visual
contrast, to assess whether such enhanced materials further increase the
robustness and accuracy of automated image-based scoring.

While our study shows promising results, several critical aspects
need to be addressed for improving robustness and generalizability. The
present workflow is optimized for well-cleaned bait sticks; heavy soil
adhesion could be a limiting factor, as its removal still requires more
manual effort before imaging. Future developments could focus on
adapting the segmentation to tolerate surface contamination. Full
automation will still require periodic human quality checks, and
implementing routine inspection of a small subset of strips can help
ensure that algorithmic performance remains stable across batches and
imaging sessions. The parameters applied in this study may not gener-
alize across all image conditions. Standardized image acquisition pro-
tocols, including lighting, camera distance, and background, are crucial
for ensuring reproducibility. Our pipeline is computationally repro-
ducible, but full scientific reproducibility through repeated independent
measurements will need to be addressed in future studies. Moreover,
optimization algorithms are often required to identify parameter sets,

11
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searching the center of circular perforations (Cauchie et al., 2008),
though such procedures were not examined schematically in this study.
External validation using another independent dataset is necessary to
evaluate method transferability. Another logical next step is to extend
the workflow toward categorical, depth-resolved interpretation of
feeding location along the strip, which will require a dedicated modeling
approach beyond pixel-fraction thresholds.

5. Conclusion

This research introduces a reliable and scalable computer vision
method designed to automate the assessment of bait lamina stick con-
sumption, serving as a widely used indicator of soil fauna activity. The
automated technique showed significant concordance with manual
evaluations, especially concerning partial feeding levels, and effectively
minimized subjectivity and manual labor compared to conventional
visual assessments. This study validates the practical accuracy of the
method. The adoption of intensity-based -classification thresholds
allowed for a more detailed analysis of feeding behavior, representing a
significant improvement over binary or categorical manual approaches.
Beyond accuracy considerations, an important strength of automation is
the creation of a standardized and permanently archived image record,
which ensures transparent and verifiable interpretation across studies
and over time. While the time savings from automated scoring may be
modest in small experiments, they become operationally meaningful in
larger monitoring programs where hundreds to thousands of strips must
be processed, directly reducing labor demands and overall project costs.
In this sense, improved processing speed acts as an enabling factor for
scaling bait-lamina testing beyond small research plots.

To address current limitations, future improvements could include
integrating machine learning techniques for more adaptive classifica-
tion, enhanced preprocessing algorithms to reduce background noise,
and the use of multispectral imaging for better discrimination of con-
sumption states. Field-deployable solutions or smartphone-based ap-
plications could also extend the tool's usability beyond laboratory
conditions, supporting high-throughput monitoring in ecological field
studies and sustainable soil management programs. In summary, the
proposed system represents a significant step forward in soil biological
monitoring, offering a transparent, reproducible, and efficient alterna-
tive to manual scoring methods.
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