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A B S T R A C T

Soil fauna plays a critical role in ecosystem functions such as nutrient cycling, organic matter decomposition, and 
soil structure maintenance. Accurately assessing their activity is therefore essential for monitoring soil health. 
Traditional methods like the bait lamina test, while widely used, rely on manual visual scoring, which can be 
subjective, time-consuming, and difficult to scale. In this study, we present an automated computer vision 
approach to quantify soil fauna activity by assessing bait consumption on bait lamina sticks, using high- 
resolution imagery processed with a Python-based pipeline. We implemented this approach on 159 bait sticks 
gathered from field plots in Brandenburg, Germany, and compared the automated findings with assessments 
from five independent human operators. The automated method displayed a strong agreement with manual 
evaluations, yielding Pearson's r between 0.80 and 0.92, depending on the operator, and Cohen's kappa of 0.48 in 
categorical concordance. The Bland-Altman analysis revealed that over 90 % of the automated scores were 
within +/− 0.2 of the manual measurements. This automated technique reduced the time required for analysis in 
comparison to manual scoring, along with removing operator subjectivity and bias. Although there was an 
underestimation in identifying fully consumed bait holes, the average difference between the automated and 
manual scores was only 0.02 (p = 0.0049), suggesting a negligible effect size. The automated approach is 
straight-forward, reproducible, and flexible, which facilitates the efficient and impartial evaluation of soil fauna 
activity for large-scale soil health monitoring. Possible improvements could involve enhancing the image- 
analysis workflow, such as improving hole-detection robustness, reducing sensitivity to coating or lighting 
variation, and exploring more advanced classification models.

1. Introduction

Evaluating soil health is essential for sustainable agriculture and 
ecosystem management, as soil biological processes directly influence 
nutrient cycling, organic matter decomposition, and plant productivity 
(van der Heijden and Wagg, 2013). Among many indicators of soil 
health, the activity of soil mesofauna, such as collembolans, mites, and 
enchytraeids or soil macrofauna, especially earthworms, serves as a 
sensitive proxy, reflecting both the current state and resilience of the soil 
ecosystem (Ritz et al., 2009; Bardgett and van der Putten, 2014). Meso- 
and macrofauna are principle drivers of litter breakdown and microbial 
interactions, and their activity has been shown to respond rapidly to 
changes in land management, pollution, and climate conditions 
(Brussaard et al., 2007). Quantifying how biological activity affects soil 

structural parameters and biochemical processes is key to assessing soil 
health (Franciska T. de Vries et al., 2013).

Von Törne Von (1990) introduced the bait lamina test (BLT) as a 
rapid and straightforward method for the visual assessment of plant 
debris consumption by soil organisms. Detailed descriptions of the BLT 
can be found in other sources (ISO, 2016). In essence, the method in
volves filling holes in PVC strips with bait material made from cellulose 
and plant material (such as wheat bran or nettle leaf powder) and then 
inserting the strips in soil for a certain period, depending on the feeding 
activity. After exposure, an operator visually counts the number of 
pierced holes, providing a measure of feeding activity of soil fauna. Due 
to its simplicity, the BLT has been widely utilized for soil health 
assessment, particularly to evaluate the impacts of land use and man
agement changes in agroecosystems (Larink and Sommer, 2002; Förster 
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et al., 2015; Römbke et al., 2017), including pesticide or fertilizer 
application in agricultural systems (Birkhofer et al., 2022). Beyond 
agroecosystems, the BLT has also been applied in other fields, such as 
soil pollution (Filzek et al., 2004; André et al., 2009; Vorobeichik and 
Bergman, 2020), ecotoxicological testing (Jänsch et al., 2006; Bart et al., 
2018) and assessment of ionizing radiation (Beresford et al., 2022), fire 
impacts (Musso et al., 2014; Podgaiski et al., 2014), forest fragmentation 
(Simpson et al., 2012), urbanization (Bergman et al., 2017), and plant 
invasion (Pehle and Schirmel, 2015).

Although the traditional approach of visually assessing the BLT has 
been widely applied and accepted as a standard practice to quantify soil 
fauna activity (ISO, 2016), it comes with several limitations. The most 
critical issue is operator variability: different assessors may interpret 
bait consumption inconsistently, which introduces subjectivity and af
fects comparability across studies (Eisenhauer et al., 2014). A second 
challenge is the coarse scoring scales commonly used in manual 
assessment, typically two classes (any or no consumption) or three 
classes (total, medium or no consumption), which limits resolution and 
reduces the accuracy of derived activity measures (Vorobeichik and 
Bergman, 2021). Finally, manual scoring is relatively more time- 
consuming and labor-intensive, as each stick must be inspected hole 
by hole. Different existing manual scoring systems thresholds are shown 
in Table 1.

To address the limitations of manual bait lamina evaluation, this 
study aims to develop and validate an automated, impartial, and scal
able method to assess bait lamina consumption using computer vision. 
We present a reproducible Python-based image analysis pipeline that 
detects and quantifies feeding activity on bait lamina sticks from high- 
resolution images.

The specific objectives of this study are to: 

(1) develop a computer vision workflow to automatically assess bait 
lamina feeding activity;

(2) evaluate the accuracy and reliability of the automated scoring 
method compared to visual assessments; and.

(3) assess the potential of this method for large-scale, high- 
throughput soil biological activity monitoring.

We hypothesize that the automated approach will yield results 
comparable to manual scoring while reducing subjectivity and 
improving scalability. This tool is intended to support standardized, 
reproducible soil fauna monitoring in both ecological and agricultural 
research.

2. Materials and methods

2.1. Site description and field nstallation

As the scope of this study focuses on the verification of a new eval
uation method, the experimental site is only described briefly: The data 
collection took place in 2024 in the patchCROP landscape laboratory. 
The experimental site is located in Brandenburg (52.4426◦N, 
14.1607◦E) and characterized by heterogeneous, sandy soils due to 
historic glaciation events, displaying cambisol, luvisol, and truncated 
luvisol soil types (Hernández-Ochoa et al., 2025). The long-term annual 
mean temperature from 1980 to 2010 was 9.2 ◦C, while the average 
annual rainfall was 568 mm, ranging from 373 to 774 mm. For context 
on field conditions during sampling, refer to Appendix A and Fig. A1 in 
Appendix, which shows the daily precipitation, temperature, and volu
metric soil moisture in two selected plots.

The bait lamina sticks (Terra Protecta GmbH, Berlin, Germany) used 
in this study measure 120 mm × 6 mm × 1 mm and contain 16 circular 
perforations (diameter 1.5 mm) spaced at 5 mm intervals, starting at 5 
mm from the insertion tip. The sticks had either gray or white color, 
varying with purchased batches. The perforations are filled with a 
standardized bait mixture, that was prepared using 70 % cellulose 
powder, 27 % finely ground and sieved wheat bran and 3 % charcoal and 
water to produce a paste-like consistency. To ensure a complete filling in 
each of the 16 perforations, 4–6 rounds of drying and refilling were 
conducted to close drying gaps and cracks.

Bait lamina sticks were placed in summer 2024 in plots of grain 
maize (Fig. A2) that captured a gradient in both soil texture and man
agement practices (Table A1 in Appendix). Specifically, plots ranged in 
sand content (63–67 % to 80–83 %; sandy loams to loamy sands) and 
weed control strategies (chemical vs. mechanical weed control). This 
gradient allowed us to evaluate whether the automated classification 
and detection algorithms remained accurate and consistent despite dif
ferences in soil background or bait stick color, which can affect image 
analysis. Activity was checked regularly using test sticks and all sticks 
were removed after 21 days and individually wrapped in aluminum foil 
for transport. The exposure period lies in between the ones reported for 
other studies on similar soils in Brandenburg of 14 days on grassland 
(Birkhofer et al., 2022) and 28 days on arable soils (Joschko et al., 2008; 
Birkhofer et al., 2022). After field retrieval, the bait sticks were often 
covered with adhered soil particles. In the laboratory, the sticks were 
cleaned using moistened paper towels to remove soil particles that might 
obscure bait consumption. Any residual soil within the perforations was 
gently dislodged using needles and brushes to prepare them for the 
manual and automated evaluation. This cleaning step was essential to 
prevent false pixel detection in the automated algorithm, as soil specks 
can mimic bait consumption.

Five operators (M1–M5) independently evaluated all bait lamina 
strips from the same set of images. Operators M1 and M5 were authors of 
this paper, and M2, M3 and M4 were graduate students assisting in data 
evaluation. None of the operators, except M5, had prior experience with 
the bait lamina method or formal training in soil ecology. This compo
sition was chosen to represent typical variability among non-expert 
users performing routine assessments. Operators visually inspected 
each perforation and assigned one of the 3 categories: full activity, 
partial activity, and no activity with activities assigned as 100 %, 50 % 
and 0 %.

2.2. Image acquisition and preprocessing

To digitize the bait lamina sticks for automated analysis, we devel
oped a controlled imaging setup using a mounted Android smartphone 
camera positioned perpendicular above a grid-lined A4 background 
(Appendix Fig. A3). Images were captured using a smartphone (Android 
13, 16 MP rear camera, f/1.8 aperture). All AI-based enhancements 
(HDR, scene optimizer, auto-beautification) were disabled to avoid pixel 

Table 1 
Comparison of bait lamina scoring systems with examples from the literature.

Scoring Manual Classification

2-point 3-point 5-point

(Törne Von, 
1990)

(ISO 18311, 
2016)

((Thakur 
et al., 2018; 
Siebert et al., 
2019) Manual 
scoring in this 
study

((Bergman et al., 
2017; 
Vorobeichik and 
Bergman, 2021, 
2023)

0 Bait is not 
perforated

Consumption of 
the bait by less 
than half

Filled Bait untouched

0.25 ~ 25 % hole area 
is empty

0.5 Partly empty ~ 50 % hole area 
is empty

0.75 ~ 75 % hole area 
is empty

1 Bait is 
perforated to 
any extent

Consumption of 
the bait by at 
least half

Empty No bait left
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interpolation or sharpening artifacts. The sticks were placed in a fixed 8- 
stick arrangement per image, with each stick spaced equally. This 
arrangement ensured consistent orientation across samples and mini
mized parallax distortions. The camera was positioned 21 cm above the 
surface, and images were captured under diffuse lighting provided by a 
custom light table, enhancing contrast across both gray and white bait 
stick variants (Appendix Fig. A4).

Every image was converted to grayscale via OpenCV's cvtColor, 
which implements the standard 0.299 R + 0.587 G + 0.114 B formula 
(Gonzalez and Woods, 2017) a process that reduces a color image to 
shades of gray based on luminance, thereby simplifying analysis. 
Gaussian blurring was applied to minimize background noise by 
smoothing the image, using a Gaussian kernel to suppress high- 
frequency variations (Flusser et al., 2016; Bergstrom et al., 2023). The 
Hough Circle Transform, a feature extraction technique commonly used 
in computer vision for detecting circular shapes (Kierkegaard, 1992; 
Kerbyson and Atherton, 1995; Li and Wu, 2020), was then employed to 
identify perforations. Finally, the pixel intensity histograms inside each 
detected hole were analyzed to quantify grayscale variation, which can 
indicate levels of material removal or activity inside the perforations. 

Feeding intensity was then quantified for each detected circle by 
computing the percentage of white (background) pixels within its area.

2.3. Pipeline steps

The automation workflow (Fig. 1) consisted of two sequential scripts 
developed in Python using the OpenCV, NumPy, and PIL libraries. The 
pipeline is explained in subsequent subsections and is available in 
GitHub (https://github.com/Adrija1/baitstick-analysis).

2.3.1. Strip extraction and background classification
High-resolution JPEG images were cropped to isolate the sticks and 

then split into eight vertical strips, each representing one bait lamina 
stick. For each strip, the mean grayscale pixel intensity was calculated to 
classify background color. Strips with mean intensity above 190 were 
assigned as white background, and those at or below 190 as gray. This 
classification, based on the distribution of grayscale values in our im
aging setup, ensured consistent separation of stick types and informed 
the parameter settings used in subsequent image processing steps, such 
as circle detection. This threshold may require adjustment under 

Fig. 1. Workflow diagram of the automated bait lamina sticks analysis pipeline. Each step indicates key parameters or decisions that can be fine-tuned, such as 
intensity thresholds, blur settings, and classification criteria.
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different lighting conditions or camera settings. Background classifica
tion also determined the parameter settings for subsequent image pro
cessing: white and gray sticks required different levels of contrast 
enhancement and circle sensitivity during Hough Circle detection. The 
individual strip images were then automatically organized into struc
tured subfolders, labeled according to the original image and segment 
number.

2.3.2. Hole detection via hough transform
Each strip image underwent analysis using a computer vision pipe

line that initiated with adaptive Gaussian blurring, where the parame
ters for kernel size and blur intensity were tailored according to the 
strip's background tone (either white or gray) to improve contrast and 
reduce noise. We used a Gaussian filter (OpenCV's GaussianBlur) using a 
9 × 9 px kernel. The standard deviation (σ) was set to 2.0. These values 
were chosen empirically to provide optimal noise reduction and edge 
enhancement in our dataset but may require fine-tuning for other image 
conditions or different bait stick colors. Next, the Hough Circle Trans
form was utilized to identify circular perforations that correspond to the 
bait-filled holes. Detection was performed with OpenCV's HoughCircles 
(HOUGH_GRADIENT), applying the parameters shown in Table A2 in 
the Appendix.

Each bait lamina hole is biconical, with an inner diameter of 
approximately 1.5 mm and an outer diameter of 2 mm. The segmenta
tion algorithm detects the visible outer contour of each hole in the 
image, corresponding to the 2 mm outer diameter. Although the bait 
lamina design is nominally standardized, we observed deviations in both 
hole alignment and diameter across strips, likely due to manufacturing 
variability. Fixed-position or fixed-radius approaches were tested but 
led to frequent missed detections when holes were slightly displaced or 
noncircular. For this reason, the adaptive circle-detection step was used 
to locate the actual hole boundaries in each image, which improved 
robustness across heterogeneous strip batches and imaging angles.

2.3.3. Pixel-intensity thresholding & consumption-level assignment
For every identified circle, the pixel intensity in that area was 

examined to determine the proportion of white (unconsumed bait) 
pixels. To binarize holes against the background, we applied a threshold 
equal to the mean gray-level of each strip minus 40 intensity units. In 
practice, this dynamic threshold typically equates to approximately 220 
for white-stick images and about 170 for gray-stick images. The value of 
40 units was selected to maximize the separation between bait and 
background pixels based on visual inspection of image histograms. 
Nevertheless, these values should be regarded as starting points and may 
need to be adjusted for optimal performance in different imaging envi
ronments. Annotated images were saved with overlaid circles and 
labeled percentage of feeding activity.

2.4. Activity assessment

The percentage of whitened pixels within the circular mask repre
sents the proportion of bait removed and yields a continuous eaten 
fraction between 0 and 1. Strip-level activity was calculated as the 
average of these per-hole fractions. This value is used as the primary 
automated indicator of feeding activity.

For scoring the activity fraction from manual method, the simplified 
common three-point classification system was used, with medians 
assigned as follows: 0 % for No activity, 50 % for Partial, 100 % for Full 
activity.

The activity for a strip was then computed as: 

Activityfrac =

∑3

i=1
ni*mi

N 

where ni is the number of holes in class i, mi is the median activity 

fraction of that class, and N is 16, number of holes in the strip.

2.5. Validation metrics

All statistical analyses were conducted in Python 3.10 using NumPy 
1.23 and SciPy 1.9, with auxiliary routines from scikit-learn 1.2 and 
statsmodels 0.14. A two-sided significance threshold of α = 0.05 was 
applied throughout. To control the family-wise error rate across multiple 
Pearson correlations and paired t-tests, p-values were adjusted using the 
Bonferroni method. Sample sizes are reported alongside each test. A 
summary of applied tests and tools is provided in Table 2.

In addition to these metrics, we evaluated the agreement between 
the automated and manual assessments using a set of complementary 
validation tests. The automated continuous feeding-activity fraction was 
compared against each operator's assessment and against the manual 
consensus (mean of the operators). Agreement was quantified using 
Pearson correlation, mean absolute error (MAE), and root mean square 
error (RMSE), Deming regression, and Bland-Altman analysis. For 
completeness, we also derived categorical classes (no, partial, full 
feeding) from the continuous per-hole percentages using 5 % and 95 % 
as thresholds and computed the corresponding confusion matrix to 
compare automated and manual classifications. Practical equivalence 
was tested using a two-one-sided (TOST) procedure with a tolerance of 
±1/16 of a hole (≈6 %). Intra-operators reproducibility was assessed 
separately using intraclass correlation coefficients ICC(2,1) and ICC 
(3,1).

2.6. Computational reproducibility assessment

To evaluate the numerical stability of the hole-based continuous 
activity metric, we analyzed a subset of 25 representative strip images. 
To mimic small but realistic changes in image acquisition, we generated 
a perturbed version of each strip by combining a 0.5◦ rotation, a 1-pixel 
translation, and a 5 % global increase in brightness. The same pipeline 

Table 2 
Summary of statistical tests, their purposes, software implementations, and 
sample sizes.

Test Purpose Software / Library Sample size 
(n)

Mean 
Absolute 
Error 
(MAE)

Quantify average 
absolute deviation 
between methods

Python 3.10, scikit-learn 159 strips

Root Mean 
Square 
Error 
(RMSE)

Quantify error 
magnitude with 
higher penalty on 
larger deviations

Python 3.10, scikit-learn 
(mean_squared_error)

ICC (2,1) Assess 
reproducibility 
(absolute agreement)

Python 3.10 (ICC 
routine; two-way 
random effects)

159 strips

ICC (3,1) Assess reliability 
(consistency)

Python 3.10 (ICC 
routine; two-way mixed 
effects)

159 strips

Pearson's r Assess linear 
agreement in activity 
fractions

Python 3.10, SciPy 1.9 
(pearsonr)

159 strips

Cohen's κ Quantify categorical 
agreement (No/ 
Partial/Full feeding)

Python 3.10, scikit-learn 
1.2 (cohen_kappa_score)

2528 hole 
observations

Bland- 
Altman 
analysis

Evaluate bias and 95 
% limits of 
agreement

Python 3.10, statsmodels 
0.14

159 strips

Deming 
regression

Model systematic 
bias between 
methods

Python 3.10, statsmodels 
0.14

159 strips

Paired t-test Test for mean 
differences in 
continuous and 
categorical scores

Python 3.10, SciPy 1.9 
(ttest_rel)

159 paired 
strips
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was rerun on these perturbed images, and agreement between original 
and perturbed activity scores was quantified using Pearson correlation, 
Bland-Altman analysis, and a two-way mixed-effects intraclass correla
tion ICC(3,1).

2.7. Processing workflow and time accounting

To quantify the total time requirement for both approaches, each 
stage from strip cleaning to final data export was recorded. For both 
workflows, cleaning soil residues from each bait stick required approx
imately 40 s. The manual method then involved around 30 s per stick for 
visual assessment under a lamp and 10 s for recording the scores in a 
spreadsheet.

For the automated workflow, the cleaned sticks were arranged on an 
A4 sheet (8 per frame; ≈ 40 s per photo), the frame was positioned under 
the camera (≈ 10 s), and the image was captured and manually checked 
for brightness and visibility (≈ 20 s per photo). Batch processing and 
result export through the Python pipeline required ≈ 10 min of unat
tended computation. Overall, the total operator time for evaluation of 
~160 strips was reduced from about 3.5 h in the manual workflow to 
approximately 2 h in the automated one.

3. Results

We performed a stepwise validation process that included both 
human evaluators (operators) and the automated method to quantify 
precision and consistency of the automated bait lamina analysis 
pipeline.

3.1. Inter-operator agreement

Five operators (M1, M2, M3, M4 and M5) evaluated bait lamina 
strips independently using a three-point classification system: no activ
ity, partial activity, and full activity. The operators exhibited strong 
agreement in their classification of bait lamina feeding activity but vi
sual comparison of activity fractions across plots revealed observable 
inter-operator variability (Fig. 2). In some plots, such as Plot 3 and Plot 
10, the interquartile ranges differ notably among operators, with M2 
frequently showing larger variance. Subjectivity in interpreting bait 
removal likely arises from differences in lighting conditions, bait color 
contrast, or perceptual thresholds for classifying full vs. partial feeding. 
Discrepancies were particularly evident in strips with high feeding 

activity, where differentiating between near-complete and fully 
consumed bait is inherently ambiguous. Such inconsistencies attest the 
risk for bias in manual scoring and reinforce the need for standardized 
protocols or automated methods to improve consistency and reliability. 
Pairwise Pearson correlation analysis indicated strong agreement, 
except for M2 (r ranging between 0.84 and 0.86) (Fig. 3f). The inter- 
operator consistency across the operators was high, with ICC(2,1) =
0.88 and ICC(3,1) = 0.90.

3.2. Agreement between manual and automated methods

The automated pipeline was validated by comparing its output to 
operator assessments. First, we compared the strip-wise average activity 
fractions derived from both, the manual method per operator and the 
automated pipeline. Across 159 bait lamina strips, the automated ac
tivity fraction showed strong linear agreement with the operators 
(Fig. 3f). The correlations were highest for M3 (r = 0.92), followed by 
M4 and M5 (r = 0.91). The automated estimate also aligned well with 
the manual consensus (r = 0.92). These relationships were reflected in 
the corresponding error metrics. Overall, the automated activity fraction 
closely tracked manual scoring patterns across strips, with strongest 
agreement for operators whose scoring distributions most closely 
matched the consensus. One operator showed a systematic tendency 
toward higher activity, which contributed to increased deviation from 
the automated estimates. Full agreement statistics are provided in 
Table 3.

To allow direct comparison with the standard bait lamina scoring 
system, the continuous per-home percentages were converted into 3 
categorical counts (no feeding, partial feeding, full feeding) by applying 
fixed thresholds. Holes with ≤5 % white pixels were assigned as no ac
tivity, holes with ≥95 % white pixels as full activity, and all intermediate 
values (>5 % and < 95 %) as partial activity. These categories are only 
used for agreement testing with the manual method and are not involved 
in computing the automated activity fraction. Fig. A5 in Appendix shows 
correlation matrices for counts of different classes between operators 
and automated methods. The No-activity class shows the highest con
sistency among all operators (r ≈ 0.94–0.99), reflecting its relatively 
unambiguous visual signature. Full-activity counts also show high 
agreement across most operators (r ≈ 0.82–0.94), with the automated 
method correlating moderately to strongly with operators. As holes in 
No and Full classes are visually unambiguous, their counts vary 
consistently between operators, resulting in higher correlations. In 

Fig. 2. Boxplots comparing distributions of bait stick activities (n = 16) per plot assessed by five different operators and the automated pipeline. Boxplots show the 
median (center line), interquartile range (box), whiskers extending to 1.5 × IQR, and outliers (points).
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contrast, almost all borderline judgments fall into the Partial class, so 
even small scoring differences accumulate there, leading to lower cor
relations for Partial despite the additive constraint.

In this part of the analysis, we shift from hole-level classifications to 
the activity class assigned to the entire strip. Examining the calculated 
activity of entire strips, most of them fell into the partial activity cate
gory, and none was under full activity (Fig. A6 in Appendix). Using M1 
as reference, manual scoring yielded 68 partial activity, 90 no activity, 
and 1 full activity strip. In contrast, the automated method assigned 107 
partial and 51 no-activity classifications. Agreement was obtained for 66 
partial-activity cases and 49 no-activity cases, with remaining mis
matches concentrated at the partial/no-activity boundary. Overall ac
curacy was 0.81, and Cohen's κ was 0.48, indicating moderate 
agreement once the continuous values are collapsed into discrete cate
gories. The remaining operators showed the same qualitative pattern but 
with lower agreement. M3 provided the closest categorical match 
among them (κ = 0.21, accuracy = 0.48), followed by M5 (κ = 0.19, 
accuracy = 0.45), and M4 (κ = 0.19, accuracy = 0.44). M2 showed the 

weakest categorical alignment (κ = 0.13, accuracy = 0.47). In all cases, 
the disagreements arose almost entirely from strips whose activity 
fraction lay close to the 5 % threshold: small shifts in the underlying 
continuous value were enough to move a strip from “partial” to “no 
activity,” creating categorical mismatches that do not reflect large dif
ferences. Representative cases of mismatches between manual and 
automated classifications, including missed holes and false positives, are 
shown in Fig. A7 (Appendix).

3.3. Bias and systematic deviation

To characterize operator-specific biases in the strip-wise activity 
fractions, we examined the signed difference distributions (manual - 
automated) for each operator (Fig. 4a–e). All five histograms are 
approximately unimodal and roughly symmetric, but they differ in 
location and spread. M1 (Fig. 4a) shows a relatively narrow distribution 
centered close to zero, in line with its near-unity Deming slope and 
minimal intercept. M2 (Fig. 4b) is clearly right-shifted, indicating that 

Fig. 3. (a–e) 2D kernel density scatter plots for comparing total activity fractions estimated by automated method with that of each operator: (a) M1, (b) M2, (c) M3, 
(d) M4, and (e) M5. The dotted line represents the Deming regression line and the equation for the regression line is shown. (f) Correlation matrix showing pairwise 
Pearson correlation coefficients between the automated method (A) and operators M1 – M5.

Table 3 
Summary of agreement metrics between the automated feeding-activity estimates and the five operators (M1–M5), along with the manual consensus.

Operator Pearson r MAE RMSE Deming slope Intercept Mean bias Accuracy

M1 0.87 0.08 0.11 0.98 +0.07 þ0.06 0.81
M2 0.80 0.36 0.40 1.28 +0.13 +0.36 0.62
M3 0.92 0.13 0.18 1.28 − 0.11 +0.12 0.84
M4 0.91 0.14 0.19 1.29 − 0.10 +0.13 0.83
M5 0.91 0.15 0.20 1.27 − 0.09 +0.14 0.79
Consensus 0.90 0.16 0.19 1.13 − 0.02 +0.18 0.74
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this operator systematically assigns higher activity than the automated 
pipeline, consistent with its strong proportional bias (slope ≈ 1.28). M3 
(Fig. 4c) also shows a positive shift and a wider spread, reflecting scaling 
differences suggested by its Deming slope (≈ 1.28). M4 (Fig. 4d) exhibits 
a modest positive shift with moderate dispersion, indicating a lower but 
still consistent overestimation. M5 (Fig. 4e) again clusters close to zero 
with only a slight right shift, suggesting small but systematic deviations. 
These histograms, together with the regression results, confirm that the 
deviations between methods are not random noise but reflect operator- 
specific tendencies in the interpretation of feeding activity.

Fig. 5 presents a detailed method comparison between the auto
mated pipeline and manual scoring by operator M1 across different 
levels of faunal feeding activity. Bland-Altman analysis was carried out 
using M1 as the reference method to quantify fixed bias and the 95 % 
limits of agreement (LOA) between manual scoring and the automated 
activity fraction. Panels (a–c) show Bland-Altman plots for partial, no, 
and full activity categories, respectively. The differences between 
methods are mostly centered around zero with relatively narrow limits 
of agreement for partial (a) and no activity (b), indicating strong 
concordance in those classes. In contrast, the full activity plot (c) dis
plays a larger positive bias, suggesting that the automated method tends 
to underestimate the number of fully eaten holes, likely due to image 
contrast or classification thresholds. Fig. 5d shows the Bland-Altman 
analysis for total activity fraction; it illustrates a small positive mean 
bias of 0.02, with LOA spanning from − 0.15 to 0.19. This narrow range 
indicates that the automated pipeline deviates only minimally from the 
operator's assessments and remains within the expected variability of a 
human operator. The BA plot for activity fractions computed from the 
automated method and the mean of 5 operators is shown in Fig. A8 in 
Appendix. The analyses showed minimal fixed bias (mean difference =
±0.02). The limits of agreement ranged from − 0.24 to +0.20, indicating 
that most strip-level deviations fell within a narrow band of ±0.2 ac
tivity units.

A summary of agreement metrics between the automated feeding- 
activity estimates and the five operators (M1–M5), along with the 

manual consensus, is given in Table 3. Pearson's r quantifies linear as
sociation, MAE and RMSE represent strip-wise error relative to manual 
scores, and Deming regression provides proportional and additive bias 
terms while accounting for uncertainty in both measurements. Mean 
bias reflects the average manual-automated difference in activity frac
tion. Accuracy refers to categorical agreement based on the thresholds 
(5 % / 95 %). Together, these metrics show that M3 and M4 align most 
closely with the automated pipeline, M1 displays minimal proportional 
bias, and M2 consistently assigns higher activity levels than both the 
automated method and the other human operators. The consensus be
haves as an intermediate reference, moderating individual operator 
tendencies.

In addition to the pairwise Deming regressions presented earlier, a 
consensus-level Deming regression was computed between the auto
mated feeding-activity fraction and the mean of the operators (M1–M5) 
to assess proportional agreement with the collective human reference 
(Fig. 5e). The resulting slope was 1.13 with a small negative intercept 
(− 0.02), indicating a mild proportional deviation. As activity increases, 
the consensus score rises more steeply than the automated estimate. This 
behavior reflects the influence of M2, M3, and M4, who showed strong 
positive proportional bias individually, on the consensus distribution.

To assess whether the automated scores were practically indistin
guishable from manual scoring, we applied a two one-sided test (TOST) 
with equivalence bounds of ±1/16 of a hole (±0.0625 activity units). 
Using the continuous strip-wise activity fraction, the differences be
tween the automated method and operators M3, M4, and M5 were sta
tistically equivalent within this tolerance (p_TOST <0.001 in all cases; 
mean differences 0.003–0.027, 90 % CIs fully within ±0.0625). The 
automated scores were also equivalent to the consensus of all five op
erators (mean difference − 0.021, 90 % CI [− 0.036, − 0.006], p_TOST =
3.8 × 10− 6). In contrast, the deviations relative to M1 (mean difference 
0.067, 90 % CI [0.050, 0.083], p_TOST = 0.66) and especially M2 
(− 0.215, 90 % CI [− 0.235, − 0.194], p_TOST = 1.00) exceeded the 
predefined equivalence bounds and were therefore not considered 
practically equivalent. To determine whether the automated pipeline 

Fig. 4. (a – e): Histograms of the difference distributions, with kernel density overlays, illustrating the spread and skew of manual–automated deviations for op
erators M1 to M5, respectively.
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deviates systematically from the reference operator (M1), paired t-tests 
were conducted on two key metrics with 159 paired observations: the 
continuous total activity fraction and the discrete categorical score (0 =
no feeding, 1 = partial, 2 = full). For the total activity fraction, M1's 
mean strip-wise activity was 0.226 (standard deviation [SD] = 0.095), 
where SD quantifies the typical deviation of individual strip measure
ments from the mean, compared with 0.206 (SD = 0.093) from the 
automated method. The mean difference of 0.020 (SD of the paired 
differences = 0.089) was statistically significant, t(158) = 2.85, p =
0.0049. Cohen's d (the mean difference divided by the standard devia
tion of the differences) was 0.23, indicating a small effect size. The 
comparison between automated and manual consensus scoring is sum
marized in Table A3 in the Appendix.

3.4. Plot- and strip-level patterns

Fig. 6 illustrates the per-strip feeding category assigned by each 
operator alongside the automated pipeline for a representative subset of 
ten plots. Fig. 6 reveals that, at the level of individual plots, the auto
mated pipeline consistently falls within the range of human scoring 
rather than producing anomalous classification. In more variable plots, 
the blue trace follows the same within-plot fluctuations captured by at 
least one operator. This pattern holds across plots exhibiting minimal 
feeding, where the pipeline's blue circles cluster tightly with human “No 
feeding” observations, as well as in plots with more variable or 

intermediate activity, where blue trace the same subtle within-plot 
fluctuations captured by the operators.

Moreover, this agreement is remarkably uniform across a diverse set 
of field conditions and plots. Whether examining highly homogeneous 
plots (e.g., Plot_7) or those with pronounced heterogeneity (e.g., Plot_3, 
Plot_4), the pipeline's classifications remain anchored within the human- 
judged range. Such strip-level agreement underscores the robustness of 
the image-analysis workflow. It reliably reproduces the spectrum of 
manual scorings while eliminating instances of complete operator 
consensus divergence.

3.5. Computational reproducibility assessment

The strip-wise activity scores of the perturbed images showed a clear 
1:1 relationship between the original and perturbed outputs (Fig. 7a), 
with a strong Pearson correlation (r = 0.92) and a two-way mixed-effects 
intraclass correlation ICC(3,1) of 0.92. Differences between paired 
measurements were generally small: the mean shift was 0.006 activity 
units on the 0–1 scale, and the Bland-Altman analysis indicated limits of 
agreement from − 0.19 to +0.21 (Fig. 7b). The spread reflects expected 
sensitivity of circle detection to slight changes in alignment and 
brightness, but the overall pattern of strip-level activity is preserved. 
These results confirm that the automated extraction of continuous 
feeding activity is numerically stable under realistic perturbations in 
image acquisition.

Fig. 5. Bland–Altman plot showing agreement range for: (a) Partial activity, (b) No activity, (c) Full activity, and (d) total activity fraction of operator 1(M1). (e) 
Deming regression comparing activity fractions between the manual (consensus) and automated method.
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Fig. 6. Strip-level classification results for each bait lamina strip (1–16) across six scoring methods: operators (M1-M5), and the automated method.

Fig. 7. (a) Relationship between activity fractions derived from the original strip images and from perturbed images combining a 0.5◦ rotation, a 1-pixel translation, 
and a 5 % increase in brightness. (b) Bland-Altman plot showing the difference in activity fraction (perturbed − original) against their mean, with the mean difference 
(dashed line) and 95 % limits of agreement (dotted lines).
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4. Discussion

4.1. Advantages of automated workflow over manual scoring

This study revealed inconsistencies across operators for bait stick 
evaluation, indicating the importance of developing a clear, easy-to- 
follow observation protocol. Operator inconsistency in evaluating bait 
sticks was also reported by Eisenhauer et al. (2014) and is a common 
issue in environmental and ecological monitoring (Schmidt et al., 2023; 
Rivera-Palacio et al., 2025). Rivera-Palacio et al. (2025) identified that 
whether an operator follows the monitoring protocol or not can affect 
the agreement between human operators and computer vision-based 
observations by the degree of R2 = 30 %. Identifying the highest 
agreement between a certain operator and a computer vision-based 
model necessarily guarantees neither the operator nor model. Manual 
classification of bait sticks is inherently subjective and may misclassify 
perforations as fully consumed even when minimal bait remains. Several 
annotated image snapshots illustrate the results produced by the auto
mated system (Fig. 8). Unlike previous approaches that acknowledge 
variability in manual scoring as a methodological limitation, this study 
seeks to minimize that subjectivity through algorithmic standardization.

This research demonstrated that a computer vision-based system can 
successfully automate the evaluation of bait lamina stick consumption, 
providing a practical and scalable indicator of soil fauna activity. The 
strong correlation between automated findings and manual assessments 
confirms the method's reliability in capturing ecologically significant 
feeding behaviors. When all preparatory and handling steps are 
included, manual processing of 159 bait lamina strips requires roughly 
3.5 h of operator time. In contrast, automated workflow, including 
arrangement, camera setup, and image quality check, requires about 2 h 
of active work and 10 min of unattended computation. This corresponds 
to about 40 % reduction in human effort. However, it should be noted 

that this time saving only accounts for the evaluation of the strips after 
the exposure. As the manual filling of the sticks is by far more time 
consuming than the evaluation and this step remains the same, the time 
saving needs to be seen in this context.

4.2. Limitations of automated workflow

The automated pipeline showed limitations in accurately identifying 
perforations that were completely eaten and thus, an overall underes
timation in activity fraction is observed. This difference may arise from 
both the limitations of the reference method itself and imperfections in 
the algorithm. Visual scoring, although the accepted ISO 18311 stan
dard, introduces observer-dependent variation that cannot be elimi
nated entirely (Eisenhauer et al., 2014). This variability is also evident in 
our dataset. A further limitation is that, despite expanding to five 
scorers, the manual reference remains constrained by the limited pool of 
available trained operators, which prevents constructing the larger fre
quency distributions that would be required to fully characterize the 
variability of the standard method.

Shadow cast on the border between outer and inner diameter of the 
perforations, especially on slightly bent sticks where the angle to the 
light source changes, could be one reason for the underestimation of 
fully eaten holes. Improvements here could increase the accuracy for 
sticks with high activities. However, heterogeneity in observation has to 
be considered as a non-negligible error source that must be addressed 
independently from model performance (Rivera-Palacio et al., 2025). 
The analysis of cumulative agreements demonstrates that more than 90 
% of automated scores are within ±0.2 of the manual reference. 
Agreement remained high across all validation metrics, with 
continuous-score correlations up to r = 0.92 and categorical agreement 
accuracies up to 84 %, indicating that the method has promising po
tential toward establishing a generally applicable workflow. However, it 

Fig. 8. Example outputs of the automated pipeline overlaid on bait-lamina strips. Each column represents a single strip, showing detected hole locations (outlined 
circles) and assigned feeding-intensity labels.
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is important to recognize the trade-off between automation and inter
pretation details. In studies where accuracy in the classification of 
completely consumed bait is essential, it may still be necessary to 
implement additional correction measures or conduct human assess
ment. A further limitation is that the current workflow reports only total 
consumption per hole and does not capture the vertical position of 
feeding along the strip, even though depth-specific patterns can carry 
important ecological information.

4.3. Future directions and methodological improvements

It is noteworthy that the tasks we performed can also be done using 
deep learning-based predictive modeling (e.g. quantifying the number of 
holes and weighted activity score). While deep learning models could 
potentially outperform our approach, the proposed method offers key 
advantages: transparency, tunability, and computational efficiency. 
Each processing step from image acquisition to parameter tuning can be 
explicitly observed, controlled, and corrected, allowing domain experts 
to guarantee the outcome's quality. Without advanced programming 
skills, one can manually adjust settings such as color thresholds or 
reflectance parameters in response to context-specific variations. This 
procedural transparency is particularly important for trustworthy 
monitoring outcomes. For instance, Hough Transform has been imple
mented in real-time applications for decades (Mukhopadhyay and 
Chaudhuri, 2015). Moreover, the proposed method is algorithmically 
lightweight and fast, making it suitable for low-power on-site device 
deployment compared to deep learning.

Recognizing these strengths, we also see the potential of deep 
learning for future applications. For instance, zero-shot learning, few- 
shot learning and foundation model do not require a large number of 
training data: e.g. SAM for image segmentation (Kirillov et al., 2023); T- 
Rex for object counting by visual prompting (Jiang et al., 2023), and; 
Grounding DINO for object detection with text-based prompting (Ren 
et al., 2024). They may ultimately outperform the proposed method in 
terms of accuracy and widespread applicability as these approaches may 
not require programming skills (Mengsuwan et al., 2024). Still, their 
black-box nature makes it difficult to trace errors or manually tune the 
model when systematic error occurs. Direct method comparisons should 
be a focus for future studies, though they are beyond the scope of this 
paper.

Although weighing the remaining bait could, in principle, provide a 
physical measure of consumption, this is currently not feasible for hole- 
level validation. Even whole-strip mass measurements would lose the 
resolution that makes the BLT valuable. Consequently, visual scoring 
remains the established reference standard (ISO, 2016), against which 
new analytical approaches, including computer vision, should be eval
uated. Future work could additionally explore integrating textile-dyed 
bait substrates (Eisenhauer et al., 2014), which offer improved visual 
contrast, to assess whether such enhanced materials further increase the 
robustness and accuracy of automated image-based scoring.

While our study shows promising results, several critical aspects 
need to be addressed for improving robustness and generalizability. The 
present workflow is optimized for well-cleaned bait sticks; heavy soil 
adhesion could be a limiting factor, as its removal still requires more 
manual effort before imaging. Future developments could focus on 
adapting the segmentation to tolerate surface contamination. Full 
automation will still require periodic human quality checks, and 
implementing routine inspection of a small subset of strips can help 
ensure that algorithmic performance remains stable across batches and 
imaging sessions. The parameters applied in this study may not gener
alize across all image conditions. Standardized image acquisition pro
tocols, including lighting, camera distance, and background, are crucial 
for ensuring reproducibility. Our pipeline is computationally repro
ducible, but full scientific reproducibility through repeated independent 
measurements will need to be addressed in future studies. Moreover, 
optimization algorithms are often required to identify parameter sets, 

searching the center of circular perforations (Cauchie et al., 2008), 
though such procedures were not examined schematically in this study. 
External validation using another independent dataset is necessary to 
evaluate method transferability. Another logical next step is to extend 
the workflow toward categorical, depth-resolved interpretation of 
feeding location along the strip, which will require a dedicated modeling 
approach beyond pixel-fraction thresholds.

5. Conclusion

This research introduces a reliable and scalable computer vision 
method designed to automate the assessment of bait lamina stick con
sumption, serving as a widely used indicator of soil fauna activity. The 
automated technique showed significant concordance with manual 
evaluations, especially concerning partial feeding levels, and effectively 
minimized subjectivity and manual labor compared to conventional 
visual assessments. This study validates the practical accuracy of the 
method. The adoption of intensity-based classification thresholds 
allowed for a more detailed analysis of feeding behavior, representing a 
significant improvement over binary or categorical manual approaches. 
Beyond accuracy considerations, an important strength of automation is 
the creation of a standardized and permanently archived image record, 
which ensures transparent and verifiable interpretation across studies 
and over time. While the time savings from automated scoring may be 
modest in small experiments, they become operationally meaningful in 
larger monitoring programs where hundreds to thousands of strips must 
be processed, directly reducing labor demands and overall project costs. 
In this sense, improved processing speed acts as an enabling factor for 
scaling bait-lamina testing beyond small research plots.

To address current limitations, future improvements could include 
integrating machine learning techniques for more adaptive classifica
tion, enhanced preprocessing algorithms to reduce background noise, 
and the use of multispectral imaging for better discrimination of con
sumption states. Field-deployable solutions or smartphone-based ap
plications could also extend the tool's usability beyond laboratory 
conditions, supporting high-throughput monitoring in ecological field 
studies and sustainable soil management programs. In summary, the 
proposed system represents a significant step forward in soil biological 
monitoring, offering a transparent, reproducible, and efficient alterna
tive to manual scoring methods.
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images degraded by Gaussian blur. IEEE Trans Image Process 25 (2), 790–806.

Förster, J., Barkmann, J., Fricke, R., Hotes, S., Kleyer, M., Kobbe, S., Kbler, D., 
Rumbaur, C., Siegmund-Schultze, M., Seppelt, R., Settele, J., Spangenberg, J.H., 
Tekken, V., Vclavk, T., Wittmer, H., 2015. Assessing ecosystem services for 
informing land-use decisions. A Problem-Oriented Approach Ecol Society 20 (3). 
http://www.jstor.org/stable/26270259.

Gonzalez, R., Woods, R., 2017. Digital image processing. Pearson International.
Hernández-Ochoa, I.M., Gaiser, T., Grahmann, K., Engels, A.M., Ewert, F., 2025. Within- 

field temporal and spatial variability in crop productivity for diverse crops—a 30- 
year model-based assessment. Agronomy 15 (3), 661.
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