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A B S T R A C T   

Predicting crop yield using deep learning (DL) and remote sensing is a promising technique in agriculture. In 
smallholder agriculture (<2 ha), where 84% of the farms operate globally, it is crucial to build a model that can 
be useful across several fields (high spatial transferability). However, enhancing spatial model transferability in a 
small-scale setting faces significant challenges, including spatial autocorrelation, heterogeneity and scale 
dependence of spatial dynamics, as well as the need to address limited data points. This study aimed to test the 
hypothesis that spatial cross validation (SCV) is a more suitable model validation practice than random cross 
validation (RCV) to enhance model transferability for spatial prediction in a small-scale farming setting. We 
compared the performances of DL models that predict crop yield for several settings including three crop types 
and two DL architectures based on RCV with and without overlapping samples and SCV. Notably, we conducted 
model performance tests on external, equally sized fields instead of the field used for training. We used high 
resolution RGB imagery taken with a drone as input. Our results show that the models using SCV outperformed 
those using RCV when the models were tested on external fields (on average r = 0.37 for SCV, r = 0.18 for RCV 
with overlap and r = 0.07 without), even though the models using SCV showed a substantially lower perfor
mance for cross validation (CV) than those using RCV (r with SCV and RCV w/o overlap = 0.73 and 0.98/0.73, 
respectively). The results suggest that RCV leads to over-optimism by overfitting the spatial structure and 
remembering image-specific information (so called memorization). Our study offers the first empirical evidence 
in agriculture that SCV is preferable to RCV in small field settings for making DL models more transferable.   

1. Introduction 

Deep learning (DL) models with computer vision (e.g. proximal and 
remote sensing) have been widely applied in agriculture (Kamilaris and 
Prenafeta-Boldú, 2018). Examples of DL applications include land cover 
and crop type mapping (Kussul et al., 2017), crop yield estimation 
(Kuwata and Shibasaki, 2015; Nevavuori et al., 2019; Maimaitijiang 
et al., 2020), drought (Shen et al., 2019) or plant disease spread (Tetila 
et al., 2020) and monitoring. DL applications can improve agricultural 
practices across scales ranging from individual organism, field, land
scape, to regional and continental scales (Ryo et al., 2022). 

Ideally, DL models in agriculture are transferable, meaning that they 
maintain high predictive accuracy in new settings, such as future years, 
adjacent fields, and different management practices. The most (84%) of 

the 540 million farms globally are smallholdings (<2 ha) (Lowder et al., 
2016), and crop rotation does not keep the same crop type in the same 
field. These conditions require to enhance model spatial transferability. 
Spatial transferability refers to the ability of a trained model to perform 
well on data beyond the training region (Zhang et al., 2020b). The 
spatial transferability of DL based prediction models in agriculture was 
assessed for grassland land-use intensity mapping (Lange et al., 2022), 
corn and soybean mapping (Xu et al., 2020), or cropland and land cover 
classification (Zhang et al., 2020a). However, previous studies have 
been carried out with large field sizes, and little is known about how well 
a DL model can be spatially transferable in smallholder settings. 

For model performance assessment, spatial cross validation (SCV) is 
a recommended practice over random cross validation (RCV). RCV es
timates the ability to make accurate predictions on new, unseen data, 
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following the i.i.d. assumption (Stone, 1974). Spatial data, however, 
have an underlying structure – spatial autocorrelation – that makes data 
points have more similar values, the closer they are (Tobler, 1970). 
Spatial autocorrelation violates the assumption of data independence 
between training, validation, and test set and hence leads to inflated 
prediction performance inference (Le Rest et al., 2014; Roberts et al., 
2017; Ploton et al., 2020; Kattenborn et al., 2022). SCV can reduce 
over-optimism for model performance assessment. However, to our best 
knowledge, no previous study has tested if a DL model trained with SCV 
performs better than RCV in different agricultural fields where they have 
different management and soil characteristics. 

The proportion of data split for train and test sets is crucial for testing 
model spatial transferability in small-scale farms. Typically, modeling 
over large areas can be less sensitive to unequal data splits (e.g., 90:10 or 
80:20), while covering sufficient data distributions in both training and 
testing. However, in smaller areas like smallholder farms, one must 
carefully balance the proportion of train and test data to ensure the test 
area captures similar spatial dynamics and scale-dependent patterns as 
the training data distribution. Different proportions can represent 
different spatial heterogeneity (Tittonell, 2023) and scale dependent 
dynamics (Heydari et al., 2023). Scale dependent dynamics in agricul
ture include for example soil heterogeneity, microclimate (van Wijk, 
1965) and biogeochemical properties (Patzold et al., 2008), and man
agement heterogeneity (Shah and Wu, 2019). Furthermore, the chal
lenge of model transferability is amplified by the scarcity of data in 
smallholder settings, which makes proper model training more chal
lenging (Safonova et al., 2023). 

The aim of this study is to examine the effect of model validation 

techniques on the spatial transferability of DL models for crop yield 
prediction using multiple crop types in a small-scale farming setting. We 
applied two convolutional neural network (CNN) architectures for pre
dicting crop yield of three crop types (soybean, maize, and sunflower) 
using UAV-based RGB images. It is noteworthy that testing multiple crop 
types and model architectures has rarely been done in previous studies 
but can enhance the generality of the test. The study site is embedded in 
a diversified agricultural landscape setting (Grahmann et al., 2024), 
with high soil heterogeneity, small field sizes and thus, low sample size. 
We hypothesize that SCV achieves a higher prediction performance than 
RCV when the models are used on another field site because SCV can 
alleviate model overfitting. 

2. Methods 

2.1. Research site and data collection 

2.1.1. Study site: landscape experiment patchCROP 
The data was collected at the agricultural landscape experiment 

“patchCROP” (Grahmann et al., 2024), located in the federal state of 
Brandenburg Germany (70 ha size; lat: 14.141348, long: 52.447421) 
that has been established in 2020. The experimental site is composed of 
30 small field arrangements of each ~0.5 ha (72m × 72m/60m; Figs. 1 
and 3). Each field has a unique treatment combination in terms of 
site-specific crop rotation, soil quality, and management practices 
including conventional/reduced chemical-synthetic pesticide use and 
with/without flower strip implementation at the field edge. Thereby, 
patchCROP aims to study diversified agricultural landscapes in the form 

Fig. 1. Conceptual framework for testing different model validation strategies for an honest model assessment of deep learning based crop yield mapping models that 
utilize remote sensing images to predict crop yield of three crop types: soy, maize and sunflower. We tested different validation strategies (random and spatial cross 
validation) with model assessment in an unseen area of the same field where the model has been trained (validation) as well as in an external field of that same crop 
type (test). Two architectures have been tested: ResNet18 and a reimplementation from the literature. All field recordings as well as yield maps have been sampled 
using a sliding window approach. We hypothesized that random cross validation (RCV) over-optimistically outperforms spatial cross validation (SCV) on the field 
used for training and validation, but when testing on an external field site SCV is better than RCV. 
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of new field arrangements, namely patch cropping, and their effects on 
yield stability, farming system resilience, ecosystem services and 
biodiversity. This study selected three summer crop types from six field 
arrangements in the cropping season 2020: soy, maize, and sunflower - 
for each crop type two fields each. The fields covered different land use 
intensities, and depict very heterogeneous soil conditions with varying 
soil texture and topography (Grahmann et al., 2024). Land use in
tensities comprised: business as usual with conventional pesticide 
application (soy, maize and sunflower); reduced pesticide application 
with additional 12m wide flower strips next to the field (soy); and solely 
reduced pesticide application (maize and sunflower). The selected fields 
covered high and low yield potential zones (Donat et al., 2022), with 
both soy fields located in the high yield potential zone, and maize and 
sunflower fields in the low yield potential zones. Note that we did not 
make use of all 30 field arrangements because some patches had been 
harvested already. 

2.1.2. UAV RGB image data acquisition 
We acquired high-resolution UAV-based RGB images. RGB images 

were taken with a senseFly-eBee X drone mounted camera (senseFly-S. 
O.D.A.) on August 6th, 2020, which incorporates an advanced GPS 
correction system that operates based on real-time kinematic (RTK) and 
post-processed kinematic (PPK) technologies, allowing accurate geore
ferencing. The overflight was performed at 84 m height with an average 
ground sampling distance of 2.22 cm and recorded in the EPSG 25833 
coordinate system. Image acquisition dates were synchronized with the 
phenological growth stages of plants as defined by the BBCH scale 
(Biologische Bundesanstalt für Land-und Forstwirtschaft, Bundessorte
namt und CHemische Industrie; Lancashire et al., 1991). BBCH scale 
employs a standardized two-digit coding system to categorize pheno
logically akin plant growth stages. Soy was in late fruit devel
opment/early ripening of fruit and seed (BBCH: 79–80), maize in 
development of fruit (BBCH: 75), and sunflower in ripening of fruit and 
seed (BBCH: 85). The recording was taken at 10 a.m. for approximately 
1 h. Weather conditions were optimal with no strong wind, no rain, or 
sunny. 

2.1.3. Crop yield data acquisition 
Soybean was harvested with Claas Lexion 6900 and 10.5m width, 

maize was harvested with Claas Lexion 770 TT at 6m width; sunflower 
was harvested with 9m cutting system and Claas Lexion 770 TT. Their 
crop yields were recorded as geospatially registered point data (Diker 
et al., 2004; Florin et al., 2009). For each field arrangement between 100 
and 300 points were recorded with approx. 1.8m distance in between 
and a harvester width of 11.5m. 

2.2. Data pre-processing 

2.2.1. RGB image pre-processing 
The landscape orthoimage was computed using Pix4Dmapper 4.5.6 

(2020) with automatic keypoint extraction (76300 keypoints per 
image). Four image tiles have been disabled for orthomosaic computa
tion. The orthomosaic was computed with 5+ overlapping images for 
each pixel resulting in high pixel fidelity. The mean reprojection error 
was 0.121 pixels. We confirmed visually that the orthoimage is not 
affected by major artifacts such as honeycomb artifacts due to pivotable 
orientation of the camera and low altitude of the sun. The image was 
visually inspected and no major artifacts were present. We clipped the 
rectangular shaped fields from the landscape recording (GDAL 3.4.2). 
Each subset image of the fields has a resolution of 2977x2977 pixels for 
fields measuring 72 × 72 m, and 2977x2480 pixels for fields measuring 
72x60 m. 

2.2.2. Crop yield map Cleaning and kriging interpolation 
Yield points collected from combine harvesters typically contain a 

number of defective observations or technical errors that need to be 

removed to ensure an accurate representation of the ground truth 
(Arslan and Colvin, 2002). This is especially important in a 
high-resolution setting at the target scale, when there are only a small 
number of yield recordings. However, these recordings need to reliably 
capture the spatial heterogeneity, unlike in low-resolution yield map
ping at a coarser spatial scale where a single yield point is less important. 
The following procedures were taken to reduce the error in yield ob
servations. According to Lyle et al. (2014) yield point errors can be 
classified among others as related to harvesting dynamics of the 
combine harvester or to the harvester operator. We removed the erro
neous yield points systematically by discarding underestimated yield 
points at the beginning and end of a harvest path according to (Black
more, 1999). Lag-time was automatically accounted for by the combine 
harvester. Operator errors related to speed changes (Arslan and Colvin, 
2002) or turns in harvest paths (Lyle et al., 2014) were accounted for by 
removing the points within the lower ten percentile of grain flow. We 
also removed the points crossing and intersecting harvest trajectories 
through visual inspection. We adjusted all remaining recorded yield 
values to standard moisture content (Mulvaney and Devkota, 2020) 
(standardized crop moisture content: soy = 13%, maize = 15.5%, and 
sunflower = 10%). We transformed the coordinate system of the yield 
point data to match the coordinate system of the UAV-taken image 
(EPSG 25833). Finally, we spatially interpolated the yield points using 
ordinary kriging (Cressie, 1988). Hereafter, we refer to the spatially 
ordinary kriging interpolated yield points as yield map. 

2.2.3. Sliding window to compile the datasets 
We compiled two datasets for model training and validation by using 

a sliding window algorithm (Li et al., 2017; Valente et al., 2022) on the 
RGB image. One dataset contained overlapping samples the other not. 
The samples that were clipped at each respective position of the sliding 
window had a resolution of 224x224 pixels (~5.4m × 5.4m) and were 
shifted with a stride of 30 pixels (~0.73m) or for the other set by 224 
pixels (~5.4m). For each of the subset images, an average yield was 
calculated for the respective sample of the crop yield map. Altogether, 
we compiled two distinct data sets for each field in which each sample is 
a tuple that consisted of a remote sensing observation and the average 
yield within this area. Applying the sliding window amounted to a total 
of 4761 samples per field for the data set with overlap between samples 
and 81 samples without overlap. 

2.3. Deep learning model architecture 

We implemented CNN models for predicting crop yield using the 
UAV-taken RGB image for each crop type of soy, maize, and sunflower 
independently. 

We tested and compared two architectures, a ResNet18 (He et al., 
2016) and a re-implementation of Nevavuori et al. (2019) as baseline 
model. To perform the task of crop yield prediction using images (i.e. 
image regression), we exchanged the last fully connected layer of the 
ResNet18 by one linear layer with rectified linear unit (ReLu) activation 
(Fukushima, 1975). The implementation by Nevavuori consisted of two 
fully connected layers with ReLu activation. 

All models have been implemented in Python v3.8 language using 
the DL framework PyTorch v1.13.0. For model training we used a high 
performance cluster with four Nvidia Tesla V100. 

2.4. Model training, validation and Test 

2.4.1. Random and spatial cross validation 
We tested and compared DL based yield mapping models using 4-fold 

RCV and SCV and assessed model transferability externally for another 
field of that same crop type (see Testing Model Transferability as well as 
Figs. 2 and 3). Therefore, we split the data set in four equally sized data 
partitions and dedicated one alternating partition as a validation set 
while combining the rest as a train set in successive iterations. For SCV 
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we used the data set with overlap and partitioned the data using spatial 
blocking, whereas for RCV we used random sampling on the data sets 
with and without overlap. We removed all samples with any overlap 
between the training and validation set for SCV to prevent data leakage. 
Note that we did not remove overlapping samples between training and 
validation set for RCV as the train set size would become too small for 
effective model training. Rather we used the data set that contained non- 
overlapping samples in order to achieve RCV without data leakage. 

After removing overlapping samples in the SCV, the combined 
training set comprised 3279 and the validation set 930 samples, 
respectively. For RCV with/without overlap, the training set had a size 
of 3570/60 and the validation set counted 1191/21 samples. 

2.4.2. Augmentations for training samples to facilitate learning 
Image augmentation is a powerful technique in remote sensing (Yu 

et al., 2017; Chen et al., 2022) and agriculture, for instance for 
crop-weed classification (Su et al., 2021; Divyanth et al., 2022). We used 
geometric and color space augmentation, expecting to prevent over
fitting (for instance to crops rows) and improve model generalizability 
via learning more meaningful feature representations rather than data 
point storage (Scott et al., 2017; Shorten and Khoshgoftaar, 2019). We 
applied randomly selected geometric augmentations (p = 0.5) to each 
input image used for model training out of a predefined set of aug
mentations. We used the following geometric transformations in order 
to prevent overfitting to spatial features like crop rows and traffic lanes: 
90◦ rotation, vertical and horizontal flip, transpose; and brightness to 
increase robustness for different lighting conditions. Augmentations 
have been applied using python package ‘albumentations’ v1.3.0 (Bus
laev et al., 2020). 

2.4.3. Model hyper-parameter tuning and model fitting 
Model hyper-parameters regulate a model’s learning ability and need 

to be considered carefully. We used ‘flat cross validation’ (Wainer and 
Cawley, 2021), in which the validation set is used for both 
hyper-parameter tuning and model selection. 

We tuned the hyper-parameters ‘learning rate’, ’weight decay’ and 
‘batch size’ on the validation set with Bayesian optimization (Falkner 
et al., 2018) in 20 trials using the Ray 2.3.0 framework (Liaw et al., 
2018). ‘Learning rate’ was sampled from a log uniform distribution in a 
range [10− 6, 10− 1], ‘weight decay’ uniformly in an interval [0, 5 * 10− 3] 
and for ‘batch size’ discrete values were selected: 4, 8, 16, 32, 64, 128, 
256, and 512. 

For model training, we employed Stochastic Gradient Descent with 
Warm Restarts (SGDR) alongside a cosine annealing learning rate 
schedule to achieve superior anytime performance and faster conver
gence compared to other methods, as proposed by Loshchilov and Hutter 
(2017). We meticulously tuned the SGDR-specific hyper-parameters 
within the optimization framework previously outlined. These param
eters include the number of epochs before each learning rate schedule 
restart (T0 = [1, 10, 50, 100, 200]) and the multiplication factor for the 
learning rate increase at each restart (Tmult = [1, 2]). 

Batch sizes affect training speed, gradient stability and regulariza
tion, yet options are limited by memory capacity and demand. Thus, we 
used Automatic Mixed Precision (Micikevicius et al., 2018) to perform 
some calculations in lower precision arithmetic, while preserving the 
accuracy of the final result. 

All models have been trained from scratch by minimizing the mean 
squared error between observations and predictions. L2 regularization 
was applied to the error term using the tuned weight decay hyper- 
parameter. We trained the models using mini-batch stochastic 
gradient descent (SGD; Ruder, 2017) with momentum 0.9 for 1000 
epochs for data with overlap, and 2000 epochs without overlap to 
counterbalance reduced sample size. 

2.4.4. Testing model performance in the field of training/validation vs. 
model transferability 

We assessed model performance i) by using cross validation (CV) on 
the field of training/validation, and ii) by testing externally on another 
field as depicted in Figs. 1 and 2. To evaluate model prediction perfor
mance in the field of training/validation we reported ‘local’ and ‘global’ 

Fig. 2. Proposed scheme for model evaluation. (A) Train-test data split that is typically employed. Within the same single field, the data is split into train and test sets 
with an uneven proportion, e.g. 80:20. If the test set is randomly sampled across the space, the spatial autocorrelation makes the model overfit. If the test set is 
spatially blocked, the spatial autocorrelation results in a much narrower data distribution in the test set than that of the train set. Moreover, it does not test model 
transferability. (B) Proposed train-test data split that prepares the equal proportion and spatial extent of train and test sets can alleviate these issues. 
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prediction performance using Pearson’s correlation coefficient (r) 
(Meyer et al., 2019) with the models using the distinct type of CV. To 
assess local prediction performance, we calculated the Pearson’s corre
lation coefficient for predicted vs. observed yields within each fold and 
then reported the median of these coefficients across all folds (local r). 
Whereas, the global r was computed from all predictions made across 
the folds versus the observed values, treating the entire set of predictions 
as one large dataset. Therefore, we tested both the generalizability of the 
model across different subsets (local) and the model’s overall ability to 
predict across the entire dataset (global). For external model assessment 
(i.e. model transferability), the average prediction of the CV fold’s 
model prediction was reported. Combinedly, global performance on the 
field of training/validation and external assessment allowed a holistic 

assessment of model predictive capabilities over entire fields. The 
former was used for assessing overall performance on familiar data, and 
the latter employed to test the model’s transferability and robustness to 
new, unseen conditions. 

3. Results 

We trained the models over 1000/2000 epochs based on root mean 
squared error (RMSE). In Fig. 4 we showcase representative model 
training and selection of a ResNet18 architecture that predicted maize 
yield using 4-fold random and spatial CV (for other crop types and ar
chitecture, see Figs. S1–S5). RCV fitted the models more tightly to the 
training data than SCV, with RCV with overlapping samples having the 

Fig. 3. Dataset from patchCROP landscape experiment in the federal state of Brandenburg, Germany comprising a high-resolution aerial RGB image of small field 
arrangements and crop yield recordings from which we selected a subset of six fields. The middle row shows the zoomed-in field view of drone imagery with actual 
training samples (left) and yield point recordings with ordinary kriging interpolated yield maps for the respective crop types: soy, maize and sunflower. Red indicates 
low yield, green high yield zones. For model training and validation, the same field is used (upper image), whereas model performance is tested on another field of 
that same crop type (lower image). Crop yield distributions for both fields are shown at the bottom. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 
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tightest fit. The models with the tightest fit to the validation set over all 
epochs were selected as prediction models (indicated by the red dashed 
line and number). Epochs of model selection occurred latest for RCV 
with overlap, earlier for RCV without overlap, and earliest for SCV 
(917–973 for RCV overlap, 67–865 for RCV non-overlap, 6–57 for SCV). 

RCV with overlap resulted in global Pearson’s r above 0.98 (i.e. 
correlation for prediction over all folds) for predicting both the training 
as well as validation sets (Fig. 5). No remarkable distinction between 
crop types was observed (Fig. S6). RCV without overlap achieved lower 
global performance on training (0.68 ± 0.1) and validation set (0.73 ±
0.08) with minor differences between crop types and architectures 
(Table 1). Conversely, SCV resulted in lower global r for predicted yields 
on the training (0.58 ± 0.13) and validation set (0.73 ± 0.05) with 
minor differences between crop types. When we tested prediction on 
another field (test set), however, we observed a drop in prediction 
performance. On average both RCV strategies revealed poorer predic
tion performance than SCV for predicting maize and soy on the test set. 
For predicting sunflower RCV and SCV performed similarly low 
(Table 1). The baseline models showed similar behavior on the train and 
validation sets (Fig. S6). 

By aggregating all results of 3 crop types and 2 model architectures 
(Fig. 6), the average model performance supports our hypothesis where 
SCV achieves higher prediction performance than both RCV strategies 
when the model is used on another field site (mean r = 0.18 for RCV with 
overlap, mean r = 0.07 for RCV without overlap, mean r = 0.37 for SCV). 
Additionally, RCV with overlap made the model performances close to 
zero standard deviation for the train and validation set, but high devi
ation for the test set (SD = 0.37). RCV without overlap showed moderate 
standard deviation on train (SD = 0.11) but high on test (SD = 0.31), 

while SCV had moderate standard deviation for performances on both 
train and test set (SD = 0.13 and 0.21, respectively). This may indicate 
RCV lets the models overfit to the data more than SCV. 

4. Discussion 

This study aimed to investigate the effect of model validation tech
niques on the transferability of crop yield prediction models for multiple 
crop types in a small-scale farming setting that use CNNs and RGB 
remote sensing images. For that purpose, we i) tested RCV and SCV as 
model training and validation techniques for DL based crop yield map
ping models, and ii) evaluated them by testing externally on another 
field. We demonstrated that the models using SCV achieved on average a 
higher performance score and less standard deviation than using RCV on 
external test sites. 

Models using SCV showed an improved prediction for settings 
beyond the training data than the ones using RCV, which indicates 
higher transferability. As seen in Fig. 3, the data distributions in the 
external test fields differed from those in the training fields. For instance, 
in a test field crops could visually differ from crops in the training field 
and have increased yield due to different soil and management condi
tions (Herrmann et al., 2020). Hence, devising training and testing data 
to be equally sized is an important step for model performance tests so 
that the data sets cover the dynamics at the same spatial scale. 

Our findings are especially important for applications, where fields 
have small spatial extent and are highly heterogeneous (c.f. small data 
(Safonova et al., 2023),). For example, these settings can be found in 
diversified agricultural systems with smaller field size that aim to design 
sustainable cropping systems of the future (Grahmann et al., 2024), as 

Fig. 4. Training and validation loss for 4-fold random (RCV) with and without overlapping samples and spatial (SCV) cross validation for ResNet18 of maize yield 
prediction shown as root mean squared error (RMSE). Models that use overlapping samples are trained for 1000 epochs (i.e. training cycles through the entire 
dataset). Models that use non-overlapping samples are trained for 2000 epochs to counterbalance reduced sample size. Red dashed lines and the associated numbers 
indicate the epoch of model selection in which the model has the tightest fit to the within-field validation set. In the Supplementary Information the equivalent results 
for the other crop types and the other model architecture are available. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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well as in smallholder farming. Both applications have similar physical 
structures of small field size and diversified crop production, making our 
proposed approach applicable for both settings. Typically, DL models 
require a lot of data to train (cf. big data; Cho et al., 2016; Henighan 
et al., 2023). Small data with high heterogeneity from model training is 
a challenge that has rarely been engaged in agriculture and other do
mains (Safonova et al., 2023). Our results suggest that SCV is a 

promising training and validation approach for making a DL model more 
transferable and by that more readily accessible. However, our study’s 
relevance extends beyond the agricultural domain and enhances model 
generalization, demonstrates testing transferability and showcases how 
external testing can help to prevent positively biased performance as
sessments. This can for instance, but not exclusively, be in remote 
sensing research domains that use DL based prediction models, such as 
land cover and land use classification (Sefrin et al., 2021), environ
mental monitoring (Yuan et al., 2020), and change detection over a 
small spatial extent. 

In order for a model to be transferable, a crop prediction model 
would require to generalize from what it learned from the dynamics and 
concepts in the training field. Larger test fields can be more heteroge
neous. Thus, models are required to be more robust (Stone, 1974) and 
have higher generalization (Djolonga et al., 2021). Here, we observed 
that models using SCV outperformed those using RCV of any overlap 
strategy in an external test field as opposed to the reversed performance 
order in the training field. Fields for training/validation and testing 
visually differed quite a lot and had significantly different yield distri
butions. For soy for instance, the test field looked drier, plants were less 
green and sparser and the average yield was much smaller as well as its 
distribution much narrower. That SCV achieved higher prediction per
formance on the test set than RCV despite the described shift in the data, 
indicates that the models using SCV learned more meaningful features 
for better generalization, are more robust and hence more transferable. 

Moreover, it suggests that models using RCV overfit the training data 
more than SCV and have inflated performance (i.e. reported performance 
is biased), which is in line with findings of previous studies (Le Rest 

Fig. 5. Observed vs. predicted yield on training, validation and external test set using ResNet18 architecture and color coded 4-fold random (RCV) with and without 
overlap between samples and spatial (SCV) cross validation for crops soy, maize, and sunflower. For each crop type, the upper row shows the results with RCV with 
overlap, the middle RCV with non-overlapping samples, and the lower row shows ones with SCV. Global r specifies Pearson’s correlation coefficient of predictions 
and observations across all folds of the respective cross validation, whereas local median r shows the median r of the folds. For external model assessment we report 
the average Pearson’s correlation coefficient across the folds of the respective cross validation models. In the supplementary material section we provide the same 
figure for the baseline model. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Yield prediction performance on training, validation and external test set using 
ResNet18 architecture trained and validated using 4-fold random (RCV) with 
and without sample overlap and spatial (SCV) cross validation for crops soy, 
maize, and sunflower. Train and validation sets mutually span the same field, 
whereas the test set is on an external field. Performances on train/validation sets 
are indicated by global r - the global Pearsson’s r over every data point predicted 
during CV. Test set performance is the average prediction of the CV fold’s model 
prediction.   

ResNet18 Baseline 

Train Val Test Train Val Test 

Soy RCV over. 0.98 0.98 0.33 0.98 0.98 − 0.5 
RCV no-ov. 0.63 0.67 0.47 0.85 0.77 − 0.1 
SCV 0.43 0.76 0.46 0.42 0.79 0.5 

Maize RCV over. 0.98 0.98 0.5 0.98 0.99 0.47 
RCV no-ov. 0.71 0.8 0.24 0.71 0.8 0.22 
SCV 0.69 0.64 0.55 0.75 0.7 0.47 

Sunflower RCV over. 0.98 0.98 0.06 0.98 0.97 0.2 
RCV no-ov. 0.52 0.59 − 0.4 0.68 0.77 0 
SCV 0.62 0.76 0 0.59 0.78 0.22  

Fig. 6. Aggregated model prediction performance over two deep learning architectures and three crop types (n = 6 for each) for random (RCV) with and without 
sample overlap and spatial (SCV) cross validation approaches. The rhombus shape represents an aggregated performance score, and the associated bar represents the 
standard deviation. Aggregated performance metric on training/validation is the average global Pearson’s correlation coefficient (r) of predicted vs. observed yield, 
on test the average r across folds. We can see a significant performance drop from train to test in both RCV cases, while a performance decline from train to test is 
much smaller for SCV. 
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et al., 2014; Roberts et al., 2017; Ploton et al., 2020; Kattenborn et al., 
2022). Using RCV with remote sensing imagery leads to inflated model 
performance. The cause of inflated performance can be accounted to: i) 
overfitting to the spatial structure in the training field, ii) overfitting to 
training data by storing data points rather than learning generalizable 
features. Our results suggest that RCV with overlap had inflated per
formance due overfitting and data points storing due to data leakage, 
whereas RCV without overlapping samples was inflated solely by 
overfitting to the spatial structure. 

When structural dependencies are present in the data, and the pro
cess of splitting training and validation samples does not ensure their 
independence (cf. spatial autocorrelation; Moran, 1950; Hubert et al., 
1981), prediction performance has been shown to be inflated (Le Rest 
et al., 2014; Roberts et al., 2017; Ploton et al., 2020; Kattenborn et al., 
2022). For example, Kattenborn et al. (2022) showed how CNN based 
segmentation using RCV inflated the prediction performance for tree 
species classification. They argued that CNNs are especially prone to 
overfit spatial structures, as it is the exploitation of image patterns that 
makes them superior predictive tools for images. Here we confirm these 
findings for crop yield prediction models using high resolution RGB 
images to have a strong positive bias when trained and validated with 
RCV as compared to SCV. 

Though DL models tend to learn image patterns for predicting rather 
than memorizing single pixels (Krueger et al., 2017), it has been shown 
that they can overfit small training data by storing data points (e.g. 
pixels in an image) rather than learning generalized features (Elhage 
et al., 2022), such as the concept and number of corncobs or ears in a 
field. Given the fixed size of a small data set consisting of sliding window 
samples in our study, we argue that the choice of model training and 
validation technique affects the model to overfit to a present spatial 
structure, or even memorize points, rather than learning more gener
alized features. Due to random sampling on images without overlap a 
model exploits the spatial structure for predicting. With overlap we 
introduce dependencies between training and validation set (cf. data 
leakage), such that models trained with RCV tend to memorize and 
achieve less generalization (i.e., low performance on the test set). With 
this we can explain the increased prediction performance of models 
using RCV in the same field as training accompanied by a huge perfor
mance drop when tested externally as a combined effect of overfitting 
and memorization. The model simply remembers what it had previously 
seen in the training field. On the contrary, sampling by spatial blocking 
in SCV can encourage the model to learn more generalized features. 

Further investigation is needed for understanding what the models 
learned. For instance, we could imagine that the models might have 
learned agronomically meaningful features including fruit bodies, plant 
height, the presence of weeds, and field management paths. Yet, DL 
models are inherently not interpretable and need to be probed with 
certain methods and concepts that add explanations for predicting (cf. 
explainable artificial intelligence (Ryo, 2022). To explain reasons 
behind predictions, visualization of learned features (Hohman et al., 
2020) or adding post hoc explanations (Ribeiro et al., 2016) are relevant 
steps in order to confirm that learned features follow generalized con
cepts. Understanding the learning outcome can help validate model 
generalizability and transferability. 

Beyond SCV, other methods and concepts can be applied to further 
facilitate model transferability. For instance, we used data augmenta
tions to help the model avoid overfitting by learning more robust and 
generalizable features (Shorten and Khoshgoftaar, 2019). Moreover, the 
model’s performance on the validation set during training can be 
monitored and the training process can be stopped when the perfor
mance starts to degrade in order to tackle overfitting the training data 
(cf. early stopping; Yao et al., 2007). Further, to facilitate model trans
ferability, models can be pre-trained with self-supervised or 
transfer-learning strategies, such that the prediction model leverages the 
knowledge learned from the pre-trained model (Yang et al., 2020). 
Self-supervised learning efficiently utilizes unlabeled remote sensing 

imagery, avoiding the uncertainties associated with the interpolated 
data sets required by traditional supervised learning methods. Addi
tionally U-Net (Ronneberger et al., 2015), with its strength in 
pixel-to-pixel prediction, presents an interesting approach for leveraging 
detailed spatial information and circumventing label aggregation. 
However, label aggregation helps manage uncertainties from 
harvester-recorded yield points and map interpolation, such that its 
circumvention introduces a specific challenge for U-Net’s detailed 
spatial analysis. Without claim of completeness, additional methods to 
facilitate model transferability can be regularization by perturbing the 
input (dropout) or the distance between ground truth and prediction 
(such as L1 or L2 Loss) (Kukačka et al., 2017) as well as the use of 
ensemble methods (Ganaie et al., 2022). It’s worth noting, however, that 
methods like dropout and batch normalization, while beneficial indi
vidually, may not harmonize when applied together (Li et al., 2019). 

Using CNNs in combination with remote sensing data for prediction 
often requires a trade-off between spectral, spatial and temporal reso
lution. The scope of our study is limited to RGB reflectance values with 
very high spatial resolution (2.22 cm). Yet multispectral data, foremost 
near-infrared and red edge or the vegetation indices such as normalized 
difference vegetation index (NDVI) or Normalized difference red edge 
index (NDRE) have demonstrated effectiveness in closely correlating 
with plant chlorophyll content, health and phenology, particularly in 
crops like maize (Herrmann et al., 2020). Hence we expect single RGB 
pixels to be less important for prediction than multi-spectral pixels, but 
the image pattern to be spatially more explicit (due to higher resolution) 
and relevant for prediction. This may affect models to achieve lower 
prediction performance as for instance to be compared to (Nevavuori 
et al., 2019). Moreover, the majority of studies use multitemporal data 
as input (van Klompenburg et al., 2020). Here we showcased an 
approach based on one image, which is quite unique and also can affect 
the accuracy. Nevertheless, combinedly they do not affect the main 
finding of this study but rather highlights the current opportunities and 
the path to improvement in further studies. 

In conclusion, this paper has effectively highlighted the significant 
role that different training and validation methodologies play in the 
spatial transferability of crop yield prediction models in a smallholder 
setting. SCV for model training and validation is a powerful technique 
for crop yield mapping models in smallholder farming to learn more 
meaningful features, while alleviating overfitting more effectively than 
RCV. Testing on an external field unveils a more honest approach to 
model assessment. 
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Kukačka, J., Golkov, V., Cremers, D., 2017. Regularization for Deep Learning: A 
Taxonomy. https://doi.org/10.48550/arXiv.1710.10686. 

Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A., 2017. Deep learning classification of 
land cover and crop types using remote sensing data. IEEE Geosci. REMOTE Sens. 
Lett. 14, 778–782. https://doi.org/10.1109/LGRS.2017.2681128. 

Kuwata, K., Shibasaki, R., 2015. Estimating crop yields with deep learning and remotely 
sensed data. In: 2015 IEEE International Geoscience and Remote Sensing Symposium 
(IGARSS), pp. 858–861. https://doi.org/10.1109/IGARSS.2015.7325900. 

Lancashire, P.D., Bleiholder, H., Boom, T.V.D., Langelüddeke, P., Stauss, R., Weber, E., 
et al., 1991. A uniform decimal code for growth stages of crops and weeds. Ann. 
Appl. Biol. 119, 561–601. https://doi.org/10.1111/j.1744-7348.1991.tb04895.x. 

Lange, M., Feilhauer, H., Kühn, I., Doktor, D., 2022. Mapping land-use intensity of 
grasslands in Germany with machine learning and Sentinel-2 time series. Remote 
Sens. Environ. 277, 112888 https://doi.org/10.1016/j.rse.2022.112888. 

Le Rest, K., Pinaud, D., Monestiez, P., Chadoeuf, J., Bretagnolle, V., 2014. Spatial leave- 
one-out cross-validation for variable selection in the presence of spatial 
autocorrelation. Glob. Ecol. Biogeogr. 23, 811–820. https://doi.org/10.1111/ 
geb.12161. 

Li, W., Fu, H., Yu, L., Cracknell, A., 2017. Deep learning based oil palm tree detection and 
counting for high-resolution remote sensing images. REMOTE Sens 9. https://doi. 
org/10.3390/rs9010022. 

Li, X., Chen, S., Hu, X., Yang, J., 2019. Understanding the disharmony between dropout 
and batch normalization by variance shift. In: 2019 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 2677–2685. https://doi.org/ 
10.1109/CVPR.2019.00279. 

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I., 2018. Tune: A 
Research Platform for Distributed Model Selection and Training. https://doi.org/ 
10.48550/arXiv.1807.05118. 

Loshchilov, I., Hutter, F., 2017. SGDR: Stochastic Gradient Descent with Warm Restarts. 
https://doi.org/10.48550/arXiv.1608.03983. 

Lowder, S.K., Skoet, J., Raney, T., 2016. The number, size, and distribution of farms, 
smallholder farms, and family farms worldwide. World Dev. 87, 16–29. https://doi. 
org/10.1016/j.worlddev.2015.10.041. 

Lyle, G., Bryan, B.A., Ostendorf, B., 2014. Post-processing methods to eliminate 
erroneous grain yield measurements: review and directions for future development. 
Precis. Agric. 15, 377–402. https://doi.org/10.1007/s11119-013-9336-3. 

Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., Fritschi, F.B., 2020. 
Soybean yield prediction from UAV using multimodal data fusion and deep learning. 
Remote Sens. Environ. 237 https://doi.org/10.1016/j.rse.2019.111599. 
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