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Podsumowanie 

Tytuł: Szacowanie węgla organicznego w glebie z wykorzystaniem proksemiki 
i teledetekcji w skali pola. 

 
Węgiel organiczny w glebie (SOC) jest ważnym czynnikiem środowiskowym, który 

wpływa na jakość i funkcje gleby, globalne bezpieczeństwo żywnościowe oraz wysiłki 

zmierzające do złagodzenia zmian klimatu. Niezbędne jest dokładne oszacowanie i 

przewidzenie poziomów SOC na dużą skalę. Podczas gdy spektroskopia poprzez 

proksymalną detekcję jest skuteczna w dokładnym przewidywaniu poziomów SOC, jej 

ograniczenia w szacowaniu SOC na dużą skalę przestrzenną są niepokojące. Dlatego też 

istnieje potrzeba szybszych i bardziej opłacalnych technik ilościowego określania 

zawartości SOC. W ostatnich badaniach zaproponowano wykorzystanie metod 

teledetekcji jako potencjalnego rozwiązania. Głównym celem tego badania była ocena i 

porównanie proksymalnego sensingu gleby (pomiary spektroskopii polowej) w 

monitorowaniu i szacowaniu poziomu SOC z danymi uzyskanymi z satelity (Sentinel 2A) 

i bezzałogowego statku powietrznego (UAV) na polu rolnym. Aby zwiększyć dokładność 

metod teledetekcyjnych (UAV i Sentinel-2A) w przewidywaniu poziomów SOC, 

stworzono dziewięć indeksów spektralnych. W procesie modelowania wykorzystano 

różne pasma i długości fal, a konkretnie cztery pasma dla UAV i osiem dla Sentinel-2A. 

Dodatkowo, obliczone indeksy spektralne zostały wykorzystane jako zmienne niezależne 

do stworzenia modeli predykcyjnych dla zawartości gleby, model random forest (RF) jest 

trenowany z 90 próbek gleby zebranych z pola, oraz dziesięciokrotnej walidacji 

krzyżowej. Przed przeprowadzeniem predykcji SOC, w pracy zbadano impakt 

kowariancji. Modele utworzone z danych proksymalnych miały lepszą dokładność w 

tworzeniu prognoz za pomocą lasu losowego (RF) w porównaniu do dwóch pozostałych 

typów danych. Badanie wykazało, że technologie proksymalne i teledetekcyjne mogą być 

skutecznie wykorzystane do prognozowania SOC. 

 
Słowa kluczowe: Soil Organic Carbon, Remote Sensing, Proximal Sensing, Soil sampling, 

Random Forest 
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Summary 
 
Title: Soil organic carbon estimation using proximal and remote sensing at field-scale level. 

 

Soil organic carbon (SOC) is an important environmental factor that impacts soil quality 

and function, global food security, and efforts to mitigate climate change. It is essential 

to accurately estimate and predict SOC levels on a large scale. While spectroscopy 

through proximal sensing is effective in accurately predicting SOC levels, its limitation 

in estimating SOC on a large spatial scale is a concern. Hence, there is a need for faster 

and more cost-effective techniques for quantifying SOC content. Recent research has 

proposed the use of remote sensing (RS) methods as a potential solution. The main 

objective of this research was to assess and compare the proximal soil sensing (field 

spectroscopy measurements) in monitoring and estimating SOC levels with data obtained 

from spaceborne Unmanned Aerial Vehicle (UAV) and Sentinel-2A on an agricultural 

field. To improve the accuracy of the RS methods (UAV and Sentinel-2A) in predicting 

SOC levels, nine spectral indices were created. The modelling process involved the use 

of different bands and wavelengths, specifically four bands for UAV and eight for 

Sentinel-2A. In addition, the computed spectral indices were used as independent 

variables to create prediction models for soil content, Random Forest (RF) model is 

trained with 90 soil samplings collected from the field, and validated by ten-fold cross-

validation. Prior to conducting the SOC predictions, the study investigated the covariate 

importance. The models created from proximal sensing data had better accuracy in 

making predictions with the help of RF compared to the other two methods. The study 

demonstrated that proximal and remote sensing technologies can be exploited efficiently 

for SOC prediction.  

 

Keywords: Soil Organic Carbon, Remote Sensing, Proximal Sensing, Soil Sampling, 

Random Forest.  
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Zusammenfassung 

Titel: Schätzung des organischen Bodenkohlenstoffs mit Hilfe von Nah- und 
Fernerkundung auf Feldniveau. 

 
Der organische Kohlenstoff im Boden (SOC) ist ein wichtiger Umweltfaktor, der sich auf 

die Qualität und Funktion des Bodens, die weltweite Ernährungssicherheit und die 

Bemühungen zur Eindämmung des Klimawandels auswirkt. Es ist von entscheidender 

Bedeutung, den SOC-Gehalt in großem Maßstab genau zu schätzen und vorherzusagen. 

Während die Spektroskopie mit Hilfe der proximalen Abtastung bei der genauen 

Vorhersage des SOC-Gehalts wirksam ist, ist ihre Begrenztheit bei der Schätzung des 

SOC auf einer großen räumlichen Skala ein Problem. Daher besteht ein Bedarf an 

schnelleren und kostengünstigeren Verfahren zur Quantifizierung des SOC-Gehalts. 

Jüngste Forschungsarbeiten haben den Einsatz von Fernerkundungsmethoden als 

mögliche Lösung vorgeschlagen. Das Hauptziel dieser Studie war die Bewertung und der 

Vergleich der proximalen Bodenerfassung (Feldspektroskopie-Messungen) bei der 

Überwachung und Schätzung des SOC-Gehalts mit Daten, die von weltraumgestützten 

(Sentinel 2A) und unbemannten Luftfahrzeugen (UAV) auf einem landwirtschaftlichen 

Feld gewonnen wurden. Um die Genauigkeit der Fernerkundungsmethoden (UAV und 

Sentinel-2A) bei der Vorhersage des SOC-Gehalts zu verbessern, wurden neun 

Spektralindizes erstellt. Bei der Modellierung wurden verschiedene Bänder und 

Wellenlängen verwendet, insbesondere vier Bänder für UAV und acht für Sentinel-2A. 

Darüber hinaus wurden die berechneten Spektralindizes als unabhängige Variablen 

verwendet, um Vorhersagemodelle für den Bodengehalt zu erstellen. Das Random-

Forest-Modell (RF) wurde mit 90 Bodenproben aus dem Feld und einer zehnfachen 

Kreuzvalidierung trainiert. Vor der Durchführung der SOC-Vorhersagen wurde in der 

Studie die Bedeutung der Kovariablen untersucht. Die Modelle, die auf der Grundlage 

von Naherkundungsdaten erstellt wurden, wiesen im Vergleich zu den anderen beiden 

Datentypen eine höhere Vorhersagegenauigkeit mit Hilfe von RF auf. Die Studie zeigte, 

dass Nah- und Fernerkundungstechnologien effizient für die SOC-Vorhersage genutzt 

werden können. 

Schlüsselwörter: Organischer Bodenkohlenstoff, Fernerkundung, Naherkundung, 

Bodenprobenahme, Random Forest. 
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I. INTRODUCTION 

In the second half of the twenty-first century, the world's need for food, fiber, and energy 

is predicted to grow (Godfray et al., 2010), and this poses a challenge for farmers to 

increase their crop yields while preserving natural resources and promoting 

environmental sustainability  (Preza Fontes et al., 2019). Crop production requires fertile 

soil, which can be hampered by intensive farming methods.  

The scientific community has recognized the consequences of soil degradation. By 1987, 

the United Nations Environment Programme (UNEP), in collaboration with the 

International Soil Reference and Information Centre (ISRIC) called for the execution of 

the Global Assessment of Soil Degradation (GLASOD) project that formed a world map 

of human-induced soil degradation (Angelopoulou et al., 2020).  

The understanding of the variability of soil characteristics allows for an improved 

demand-oriented and environmentally friendly agricultural management as well as a more 

efficient use of resources (Gholizadeh et al., 2018). Soil Organic Carbon (SOC) is an 

important factor in crop growth (Fleming et al., 2000), as it influences soil moisture 

infiltration, retention, soil texture, rooting depth, soil herbicide activity, nitrogen release, 

and other nutrient cycling aspects (Kweon et al., 2013). SOC is the organic fraction of the 

soil and consists of decomposed plant and animal materials as well as microbial 

organisms, except fresh and un-decomposed plant materials (Ladoni et al., 2010). It is a 

useful indicator of soil fertility and an important factor in controlling the dynamics of 

various agrochemicals in the soil. In addition, it affects the chemical, physical and 

biological properties of a soil ecosystem (Gholizadeh et al., 2018). 

Hence, the quantitative and qualitative estimation of soil properties is a laborious process 

(Angelopoulou et al., 2019). To enhance monitoring and mapping capabilities, stable data 

sets that can provide credible information for estimating SOC content are needed 

(Sanchez et al., 2009). SOC and soil texture are vital parameters of agricultural soils and 

need to be monitored regularly (Chaudhari et al., 2013).  

 
patchCROP is an experimental approach implemented by Leibniz-Centre for Agricultural 

Landscape Research (ZALF) e.V, to design a multifunctional and sustainable cropping 

system which was started in March 2020 under on-farm conditions (Figure 1). For this, a 
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70-ha field was grouped into high and low-yield potential zones (Donat et al., 2022). 

Further, these zones were divided into 30 patches, 72m x 72m in size. The patches are 

located in a small area of the agricultural field, and they are large enough to accommodate 

the use of standard field machinery. Also, a range of soil, crop, ecological, and abiotic 

data were collected.  

 

The study area extends from latitude 52°26'51.2376'' N and 14°8'27.9492'' E (Figure 1). 

This is an agricultural production area, and field experiments are conducted as part of the 

patchCROP project. The agricultural field is managed by the Komturei Lietzen GmbH in 

Brandenburg. 

 

The structure of the thesis is organized as follows: Firstly, the literature review discusses 

various methods for collecting soil data. This section also provides detailed information 

on the workings of the Random Forest (RF) algorithm. In section II, the materials and 

methodology are presented, including the workflow, data preparation and description, 

ground truth data selection, modelling and prediction assessment. Section III presents the 

results and discussion, which includes SOC maps from different methods and a 

comparison of technologies. Section IV presents the conclusion of the study. Finally, the 

thesis includes a reference section and an appendix. 

Figure 1: Location of the study area  
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1. Review of the literature 

1.1 Data collection 

The different methods for estimating SOC content can be divided into analytical methods 

(i.e., dry and wet combustion), remote sensing-based methods (i.e., space- and airborne-

based methods), spectroscopic methods (i.e., visible near-infrared and shortwave infrared 

spectroscopy (VNIR-SWIR), and mid-infrared spectroscopy (MIR)), and laser-induced 

decay spectroscopy and inelastic neutron scattering methods (Angelopoulou et al., 2020). 

The methods are discussed in the sections below. 

a) Laboratory methods 

SOC is typically estimated in the laboratory on soil samples collected from the field 

(Rochette & Bertrand, 2007). There are two types of tests for SOC estimation, one based 

on acid digestion and the other on the principle of combustion. The second estimation is 

based on the total carbon present in the soil sample, while the first one estimates only a 

part of the organic carbon (Nelson & Sommers, 2018). SOC results are commonly 

reported as % C by weight (i.e., g C per 100 g of soil). Very often it is more convenient 

to express SOC on a per ha basis, namely as tons of C per ha (Chan, 2008). 

b) Proximal sensing 

The use of field-based sensors that are close to the ground is known as proximal soil 

sensing, i.e., within a maximum distance of two meters (Rossel & Adamchuk, 2013). 

According to Kuang et al., (2012) proximal soil sensing in the field became interesting 

because of its potential benefits. These technologies either connect with on-the-go sensors 

that are mounted on agricultural vehicles or handheld tools that can be utilized for site-

specific management (Christy, 2008). Waiser et al., (2007) said that, for a sufficient field-

scale evaluation of soil heterogeneity, the application of proximal soil sensing techniques 

requires a greater number of measured soil samples. In the next section, the information 

related to the proximal soil sensor (Veris MSP3) used in this study are provided.  

(1) Veris Multi Sensor Platform 3 (MSP3) 

Veris MSP3 technologies launched a proximal optical sensor that estimates soil 

reflectance at two wavelengths. In 2002, Veris Technologies started the development of 

soil optical devices and a VNIR spectrometer system for mapping soil (Veris 

Technologies, Salinas, KS, USA) (Bönecke et al., 2020). It is an on-the-go optical soil 
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sensor consisting of a single photodiode and two light sources (LEDs) that provide 

reflectance measurements at 660 nm (red) and 940 nm (near infrared) with a bandwidth 

of 20 nm each (Bönecke et al., 2020).  

 

 

 

 

 

 

 

 

 

According to Kweon & Maxton, (2013), organic carbon is particularly sensitive to 

these two wavelengths. At the front, the Optic Mapper has an aperture coulter that 

slices crop residue. The sensing depth is controlled by an optical module which is 

mounted in the bottom between two sides of the wheel. The wear plate is pushed 

towards the bottom of the furrow, approximately 0.04 m below the soil surface, at a 

uniform pressure to ensure a self-cleaning function. It emits alternating light from two 

LEDs and enters the soil through a sapphire window. The reflected light captures a 

photodiode and contains the light intensity at dimensionless values. Digital reflectance 

data and Global Navigation Satellite System (GNSS) coordinates are recorded at a 

rate of 1 Hz. It can record an average of 260 reflectance data points per hectare at a 

speed of 10-12 km per hour and a track distance of 12 m (Bönecke et al., 2020). SOC 

composition was predicted by a combination of red (660 nm), infrared (NIR, 970 nm), 

and optical reflectance measurements (Bönecke et al., 2020). A sapphire window in 

the bottom of a furrow 'shoe' is used for the soil measurements. Through the sapphire 

window modulated light is directed onto the soil. The photodiode received the 

reflected light and converted it to a modulated voltage, which is further processed and 

logged. 

Figure 2: Veris MSP3 Unit 
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The device consists of a depth-control row unit, an optical module, electronics for 

signal conditioning, a data logger and a Global Positioning System (GPS). It contains 

six coulter electrodes for Electric Conductivity (EC) measurements, a specially-

configured row unit for optical measurements and an Ion Selective Electrode (ISEs) 

and soil sampling shoe for pH measurements. Rolling coulters are inserted into the 

soil and the module measures EC. Based on the established practice of measuring the 

soil EC in situ, the system maps soil texture. Smaller soil particles such as clay 

conduct more current than larger silt and sand particles. Electrical current is injected 

into the soil by one pair of coulters in the module. Other five coulter measured the 

voltage changes. The measurement from one pair is for a "shallow" EC (0–30 cm) and 

the other is for "deep" EC (0–90 cm)(G. Kweon, E. Lund & Veris, 2012). 

While travelling across the field, the soil pH mapping unit automatically collected a 

soil sample and recorded its geographic position. The sampler shank is lowered into 

the soil surface during soil sampling. The collected soil presses against the two 

electrodes for two separate measurements and then the arithmetic mean of the 

measurements are recorded. Then the sampler shank is lowered again into the soil and 

as the new sample enters from its front end, the old soil core at the back end is 

replaced. Before the next measurement, the electrodes are cleaned with water by two 

spray nozzles. By a preceding calibration with pH4 and pH7 standard solutions, 

voltage is converted to pH value. Every 10 to 12 seconds pH values are recorded 

(Vogel et al., 2021).  

c) Remote sensing (RS) methods 

Mulder et al., (2011) suggested that RS can be used to gather qualitative and quantitative 

data on soil characteristics and classification. RS technologies allow for better gathering 

of data over vast regions with higher precision in terms of time and space. These 

technologies are increasingly becoming accessible to individual farmers, aiding in 

monitoring, awareness, and informed decision making. (Preza Fontes et al., 2019). Recent 

studies introduce RS techniques as rapid, low-cost, and non-destructive assessment, for 

the estimation of various soil properties, including SOC among others (Angelopoulou, 

2019). RS techniques are based on aerial and satellite imagery. These can be used to 

estimate SOC at the landscape level (Kweon et al., 2013). Due to the relationship between 

electromagnetic radiation and the soil’s complex chemical bonds, RS imagery has  huge 
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potential for creating soil profile maps (Biney et al., 2021). In the 1980s, satellites were 

used for comprehensive SOC assessment (Frazier & Cheng, 1989).  

The operation of the VNIR-SWIR used for RS applications is based on the principles of 

energy-matter interaction. The electromagnetic radiation radiated at the surface of the soil 

is reflected at different wavelengths, resulting in a spectrum that determines the fraction 

of radiation that occurs. This spectrum encodes information to obtain qualitative and soil 

properties. VNIR–SWIR spectroscopy is based on characteristic vibrations of chemical 

bonds in molecules. In particular, electronic transitions in the visible region (400–700 

nm) form broad absorption bands associated with chromophores that affect the soil 

colour, while in the NIR–SWIR (700–2500 nm) weak overtones and combinations of 

these vibrations occur due to stretching and bending of the N-H, O-H, and C-H bonds. 

Ben-Dor (2011) evaluated the NIR measurements and concluded that the OH groups have 

strong absorption characteristics in the range of 1400-1900 nm, mostly due to the soil 

water content, hydroxyl content, and clay content. It has also been observed that the 

reflectance of soils at certain wavelengths can be correlated with organic components 

(cellulose, lignin, starch), and provides valuable qualitative and quantitative information.  

Based on the principles of energy-matter interaction, a material can reflect, absorb, 

scatter, and emit electromagnetic radiation in a distinctive manner that depends on its 

molecular composition and shape, resulting in a unique spectral signature. A sensor can 

measure the reflection of an object over a wide area of a wavelength, which provides 

information about its components (Angelopoulou et al., 2020). There are gradients within 

fields that have different colours. These gradients vary with soil type and are related to 

the soil's ability to retain nutrients and moisture. Red, Green and Blue (RGB), near-

infrared spectroscopy (NIRS), and other sensors can quantify these properties throughout 

the soil profile (Murray, 2017).  

RS methods for data collection can be divided into two categories: airborne (UAV) and 

spaceborne (e.g., Sentinel-2A). At broad spatial scales, these technologies are being 

increasingly used for soil mapping and yield forecasting in the recent decades (Khanal et 

al., 2020). It has been observed that the prediction accuracy decreases from UAV to 

satellite platforms (Guio Blanco et al., 2018).  
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(1) Unmanned Aerial Vehicle (UAV) 

UAV hyperspectral imaging has the ability to spatially assess soil conditions to obtain a 

more accurate imaging of observational parameters in agricultural areas (Whitehead et 

al., 2014). From a single flight they can produce information on a large area. It provides 

hyperspectral data and helps to classify a site according to its soil diversity (Stevens et 

al., 2008). Aircrafts have the ability to carry excellent payloads, providing the ability to 

attach a wide spectral range of hyperspectral sensors. In addition, while having the added 

benefit of operating on high cloud coverage, ventilated mounted sensors make the 

particular measurement time window more flexible, giving it the ability to select the best 

flight conditions (Villa et al., 2016).  

(2) Spaceborne 

Based on the demonstrated background of interactions between the specific chemical 

bonds of the soil and electromagnetic radiation, spaceborne remote sensing is very likely 

to be used as a tool to create spatial maps of the upper soil horizon (Biney et al., 2021). 

Applications based on hyperspectral data became mainstream a few years later when the 

Hyperion spaceborne system came online (Angelopoulou et al., 2019). Indeed, their use 

was limited to ground monitoring due to (i) required atmospheric, geometric, and 

radiometric data corrections, (ii) simultaneous geological observations, (iii) the difficulty 

of locating large bare ground areas in a single image and (iv) obstacles associated with 

vegetation cover  (Angelopoulou et al., 2019). At present, SOC estimation and 

classification based on spatial data is subject to significant changes. The major milestone 

in the RS community is the United States Geological Survey (USGS) policy change that 

allows free accessing of Landsat data. In addition, Sentinel-2 is oriented to the advent of 

the Big Earth observation data era provided by European Space Agency (ESA), led by 

free and open super-spectral imagery and the advent of large fleets of small satellites (e.g., 

Planet Cubesats) (Angelopoulou et al., 2019). 

(2.1) Sentinel-2A 

Two satellites that were launched in 2015 and 2017 are part of the Copernicus Sentinel-

2 mission and are in the same sun-synchronous orbit. Sentinel-2A is a European optical 

imaging satellite launched on 23 June 2015 and later Sentinel 2B was launched on 07 

March 2017. The satellite has a high-resolution multispectral broadband image with 13 
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spectral bands. The spectral range is from vis-NIR to SWIR. Table 1 shows the Sentinel-

2A spectral bands information. 

Table 1: Summary of Sentinel-2A spectral bands 

Band Name Spatial 
Resolution 

(m) 

Central 
wavelength 

(nm) 

Bandwidth 
(nm) 

1 Coastal Aerosol 60 443 21 

2 Blue 10 492 66 

3 Green 10 560 36 

4 Red 10 665 31 

5 Vegetation Red Edge 5 20 704 15 

6 Vegetation Red Edge 6 20 741 15 

7 Vegetation Red Edge 7 20 783 20 

8 Near-Infrared (NIR) 10 833 106 

8a Narrow NIR 20 865 21 

9 Water Vapor 
Absorption Window 

60 945 20 

10 Shortwave Infrared - 
Cirrus 

60 1374 31 

11 Shortwave Infrared 1 
(SWIR 1) 

20 1614 91 

12 Shortwave Infrared 1 
(SWIR 2) 

20 2202 175 

 

(3) Indices 

RS indices are tools that use satellite imagery to assess crops and soil, helping in 

monitoring and managing these resources for sustainable agriculture (Martos et al., 2021). 

According to Jin et al., (2017) soil optical properties can be altered by components such 

as soil water content, mineral composition, and organic matter concentration. Biney et 

al., (2021) used nine derived spectral indices which have been applied to the Sentinel-2A 

and UAV datasets as independent variables, in order to improve the datasets capacity to 

predict. The added spectral indices were Colour Index (CI), Normalized Differences 

Vegetation Index (NDVI), Infrared Percentage Vegetation Index (IPVI), Normalized 

Difference Red Edge (NDRE), Soil Adjusted Vegetation Index (SAVI), Vegetation (V), 

Green Normalized Difference Vegetation Index (GNDVI), Difference Vegetation Index 
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(DVI), and Brightness Index (BI). Below the detailed overview of the indices is provided. 

Table 2 lists the spectral indices equation. 

Normalized Difference Vegetation Index (NDVI) is the furthermost popular and 

extensively used vegetation index for monitoring the Earth's vegetation cover(Matsushita 

et al., 2007). NDVI varies between -1.0 and +1.0.  

Normalized Difference Red Edge (NDRE) is a spectral index that is built as a blend of 

several bands: NIR spectrum and a band that uses a narrow spectral range between visible 

Red and NIR. While analyzing NDRE images, the color palette is typically red to green, 

where red is bare soil, pale yellow to pale green is unhealthy plants or vegetation that is 

early in its maturation, and lastly, green is a healthy canopy. 

Soil Adjusted Vegetation Index (SAVI) a measure of vegetation that attempts to reduce 

the impact of soil brightness by applying a correction factor. It is commonly used in areas 

with low vegetation cover, particularly in arid regions. 

Green Normalized Difference Vegetation Index (GNDVI) is a method of measuring 

plant photosynthesis and is a widely-used vegetation index for assessing the absorption 

of water and nitrogen in the plant canopy. 

Difference Vegetation Index (DVI) is an index which distinguishes between soil and 

vegetation, but it does not account for the difference between reflectance and radiance 

caused by atmospheric effects or shadows.  

Brightness Index (BI) is sensitive to the brightness of soils. High soil brightness is linked 

with soil humidity and the presence of salts in the soil.  

Color Index (CI) is to identify and distinguish between different types of land use and 

land cover.  

Infrared Percentage Vegetation Index (IPVI) is linearly equivalent to the NDVI, but 

have the advantage of a fully non-negative range. 

Vegetation Index (VI) is indirectly assessing soil characteristics such as soil moisture as 

they are linked to vegetation health. 
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Index 
 

Definition based on UAV Definition based on 
Sentinel-2A 

References 

CI 𝑅𝑒𝑑 − 𝐺𝑟𝑒𝑒𝑛

𝑅𝑒𝑑 + 𝐺𝑟𝑒𝑒𝑛
 

𝐵4 − 𝐵3

𝐵4 + 𝐵3
 Pałas & 

Zawadzki, 2020 

NDVI NIR −  Red

NIR + Red
 

B8 −  B4

B8 + B4
 Wilson & Sader, 

2002 

IPVI 1

2
(𝑁𝐷𝑉𝐼 + 1) 

1

2
(𝑁𝐷𝑉𝐼 + 1) Crippen, 1990 

NDRE 𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

𝐵8 − 𝐵5

𝐵8 + 𝐵5
 

Barnes et al., 2000 

SAVI (𝑁𝐼𝑅 − 𝑅𝑒𝑑) ∗ (1 + 𝐿)

𝑁𝐼𝑅 − 𝑅𝑒𝑑 + 𝐿
 

(𝐵8 − 𝐵4) ∗ (1 + 𝐿)

𝐵8 − 𝐵4 + 𝐿
 

Pałas & 

Zawadzki, 2020 

GNDVI 𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

𝐵8 − 𝐵3

𝐵8 + 𝐵3
 Gitelson et al., 

1996 

DVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝐵8 − 𝐵4 Naji, 2018 

BI √(𝑅𝑒𝑑 ∗ 𝑅𝑒𝑑) + (𝐺𝑟𝑒𝑒𝑛 ∗ 𝐺𝑟𝑒𝑒𝑛)

2
 

√(𝐵4 ∗ 𝐵4) + (𝐵3 ∗ 𝐵3)

2
 

Escadafal, 1989 

VI 𝑁𝐼𝑅

𝑅𝑒𝑑
 

𝐵8

𝐵4
 Roncagliolo et al., 

2012 

 

1.2 Modelling 

a) Machine learning 

Machine learning (ML) technique enables the prediction of a dependent variable using a 

variety of independent variables. Many of the techniques employed in digital SOC 

mapping are based on linear relationships. Recent developments in computer science have 

facilitated the utilization of machine learning methods to map SOC (Judge, 2007). 

Lamichhane et al., (2019) reported that in recent years there has been a clear transition 

from linear models to ML models for SOC predictive mapping. Digital SOC mapping is 

another area that is growing in favour for ML approaches because they can handle 

complicated, non-linear interactions between soil characteristics and predictor factors 

(Drake et al., 2006).  

b) Random forest 

ML methods like RF are used for classification and regression (Gambill et al., 2016). 

Breiman (2001) designed the RF algorithm to improve the accuracy of regression and 

classification. The algorithm consists of a collection of decision trees, often known as a 

Table 2: Spectral indices equation 
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forest or an ensemble (Guio Blanco et al., 2018). By using predictor values, the decision 

trees are randomly generated (Segal, 2004). The method utilizes a regression-based 

voting strategy (Cootes et al., n.d.). RF has the major advantage of being able to precisely 

explain the compound relationships between the independent and dependent variables 

(Emadi et al., 2020). 

Liu et al., (2006) & Biney et al., (2021) use the RF algorithm to estimate SOC by using 

proximal and RS data. They claim that traditionally, regression trees have been 

susceptible to overfitting and are sensitive to outliers. According to John et al., (2020) RF 

regression method produces better SOC results than a cubist model, Artificial Neural 

Network (ANN), Support Vector Machine (SVM), and Multiple Linear Regression 

(MLR). According to Sothe et al., 2022, for soil mapping RF showed the highest 

predictive accuracy and robustness regarding model parameters.  

Scientists used various measurements to determine the precision of the model's 

predictions. Wang et al., (2021) used the Root Mean Squared Error (RMSE) and higher 

coefficient of determination (R2) in his research. RMSE and R2 are two common metrics 

used to evaluate the performance of a RF prediction model. RMSE is a measure of the 

average error between the actual and the predicted values. It represents the standard 

deviation of the residuals. A lower RMSE indicates a better fit between the predicted and 

actual values, and a higher RMSE indicates a worse fit. It is a measurement of the 

percentage of variance in the dependent variable that can be described by the independent 

variables. R2 ranges from 0 to 1, with a value of 1 indicating that the model perfectly fits 

the data and a value of 0 indicating that the model does not explain any variance in the 

data (Farooq et al., 2022). 

The research gap in soil organic carbon estimation using proximal and remote sensing 

technologies at the field-scale level could be related to several areas. These areas include 

the lack of studies that compare the accuracy of different RS and proximal sensing 

technologies; limited research on the impact of different soil management practices on 

SOC estimation; the need for more studies on the integration of ML techniques and 

statistical models; limited research on generalization across different soil types and 

environmental conditions, and the need for more validation studies to assess the accuracy 

and reliability of soil organic carbon prediction models. Below section describes about 

the research objective. 
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2. Research objective 

The main objective is the SOC estimation using proximal and RS at the field-scale level. 

It is done by using soil samples, Veris MSP3, UAV and Sentinel-2A dataset. The goal is 

to compare and to find out the optimal SOC estimation approach. The research objective 

and tasks for this thesis is as follows: 

“Soil organic carbon estimation using proximal and remote sensing at field-scale level.” 

Tasks: 

1. Suitability assessment of proximal (Veris MSP3) and remote sensing data (UAV, 

Sentinel-2A) to estimate SOC. 

2. Creation of SOC maps from proximal and remote sensed data at the field scale. 

3. Evaluation of heterogeneity pattern of the SOC distribution at the field scale. 

4. Comparison of proximal and remote sensed SOC estimations with ground truth 

measurements. 
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II. MATERIALS AND METHODS 

The following sections describe the workflow, provides an overview of the included data, 

ground truth data selection, preprocessing of Veris MSP3, UAV and Sentinel-2A, random 

forest model and evaluation.  

 

1. Workflow 

The workflow described in Figure 3 has three sections: types of data input, data 

preparation and modelling. Section 2 describes the input data and section 3 explains the 

preprocessing of data. Section 4 and 5 describes the ground truth data selection and 

modelling respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Methodological flowchart for modelling and mapping SOC 
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2. Description of input data 

The data were collected through three different methods: (i) manual soil sampling and 

subsequent laboratory analysis, (ii) proximal sensing using Veris Mobile Sensor Platform 

(MSP3), and (iii) remote sensing using UAV and Sentinel-2A satellite imagery. Manual 

soil sampling data included three sampling campaigns. An initial sampling campaign was 

done on 10 December 2019, a second on June 2020 for Veris sensor data calibration and 

the third on 16 November 2020. Figure 5 picturise the timeline of data collection. In the 

following sections, a detailed overview of the data is provided. 

 
 

                                              Proximal sensing          Remote sensing 

              Laboratory   Veris MSP3        UAV     Sentinel-2A 

 

 

 

 

 

2.1 Manual soil sampling data 

Soil data collection was carried out for different purposes even before the implementation 

of the patchCROP experiment. In this study, three sets of manual soil samplings (Figure 

6) were available. From these three datasets, SOC was analysed at ZALF's central 

laboratory and one sub-set of data was used for the ground truthing. The method used to 

determine SOC was according to DIN ISO 10694 using a RC 612 Leco (LECO 

Figure 4:  Soil spectra measured from different platform 

Figure 5:  Timeline of data 
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Corporation, St. Joseph, MI, USA). The section below provides more information about 

the manual soil samplings. Table 3 describes the three soil samplings. 

 

 

 

 

 

 

 

 

 

 

 

 Table 3: Soil sampling detailed overview  

(72(25), 270(90): The total collected 72 and 270 samples mixed together and final samples 
analysed in the laboratory is 25 and 90 respectively). 

 

2.2 Proximal sensing data, Veris MSP3 

Veris MSP3 was used to generate high-resolution soil data and subsequent SOC 

prediction. The data were collected on 10th and 11th of March 2020. During the calibration 

event in the field, the weather was partly cloudy and partly sunny with well-moistened 

soil. The field was driven along a permanent traffic track with an initial distance of 9 

meters and an offset of 4.5 meters. The process was repeated with an offset of 18 meters, 

and then on 11.3 meters. A similar process was carried out with an offset of only 9 meters. 

Description Date Number of 
samples 

Depth Purpose 

Soil sampling 1 10 December 2019 72 (25) 0 - 0.25m Compost requisite 
analysis 

 
Soil sampling 2 05 June 2020 10 0 - 0.3m Veris data calibration 

     
Soil sampling 3 16 November 2020 270 (90) 0 - 0.3m patchCROP experiment 

regular sampling 

Figure 6:  Soil sampling points 
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Figure 7 shows the point data collected using Veris MSP3. Table 4 shows the descriptive 

statistics of data collected using Veris MSP3. 

 

 

 

 

 

 

 

2.3 Remote sensing data 

The following subsections describe both applications and the preprocessing of UAV and 

Sentinel-2A. 

a)  UAV 

An UAV flew above the patchCROP experiment on 31 March, 2020. The images were 

captured while flying at a height of 70 meters., with a spatial resolution of 12.6 cm/pixel 

for multispectral and 2.83 cm/pixel for RGB images. The used UAV was the "RS eBee" 

(SenseFly Ltd.), which was equipped with the multispectral camera "Parrot Sequoia" and 

the 3D mapping RGB camera "senseFly SODA." (Figure 8). For each flight, the 

 Red IR. pH Shallow EC Deep EC 

Min. 147.9 450.7 4.93 0.10 0.30 
1st Qu.: 155.3 499.3 6.14 0.80 2.80 
Median 157.2 508 6.48 1.20 6.0 
Mean 157.3 507.3 6.379 1.31 7.86 

3rd Qu 159.2 516.3 6.67 1.70 11.50 
Max. 176.7 550.2 7.22 5.70 104.70 

Figure 7: Veris MSP3 data collected on 10th&11th March 2020 
(IR-Infrared, pH-potential of hydrogen, EC-Electrical conductivity) 

Table 4: Descriptive statistics of Veris MSP3 variables  
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multispectral camera took four spectral images with a wavelength of 530-570nm (green), 

640-680nm (red), 730-740nm (red edge), and 770-810nm (NIR). Images were geotagged 

for orthomosaic processing using "Pix4D Mapper software". 

 

 

 

 

 

 

 

 

b) Sentinel-2A 

This study used images from Sentinel-2A taken on 01 April 2020, downloaded from the 

USGS Earth Explorer website. Level 2A Sentinel-2 imagery was used in this study 

(Figure 9).  

 

 

 

 

 

 

 

 

 

3. Preparation of data 

3.1 Preprocessing of soil samplings 

For laboratory analysis of the first soil sampling campaign, 72 samples were collected 

and reduced to 25 composite samples. The mixed sample consist of 2 to 5 single sampling 

Figure 8: RGB imagery from UAV on 31 March 2020 

Figure 9: RGB imagery from Sentinel-2A on 01 April 2020 
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points taken in the entire field. These samples were analysed for SOC content in the 

commercial lab of Eurofins (JenaBios laboratory) and reanalysed in ZALF's central 

laboratory.  

Soil sampling 2 was carried out for Veris data calibration, 10 samples were collected 

(Figure 6). These samples were analysed for SOC content at IGZ and reanalysed in 

ZALF's central laboratory. 

Soil sampling 3 was carried out in the soil quadrant (18x18m) of each patch by dividing 

the quadrant into three strips. In each strip, a composite sample of three auger points was 

mixed (total of 90 points) for subsequent laboratory analysis at ZALF's central laboratory. 

All of the samples were in an accuracy of 4.5m distance and all three soil sampling 

campaigns obtained SOC values measured with the same lab method as sampling 1+2 

used archived samples for reanalysis to exclude laboratory bias. 

3.2 Preprocessing of Veris MSP3 data 

The data collected by the Veris system are stored in two different point shape files. To 

find the correlation with the ground truth data, these datasets were converted to raster 

format by using the kriging interpolation. Figure 11 is showing the images after kriging. 

Kriging is used to predict the value of a function at a given point by computing a weighted 

average of the known values of the function in the neighbourhood of the point (Shekhar 

& Xiong, 2008). From the raster files, the sensor values at the 90 reference sampling 

points were extracted.  

3.3 Preprocessing of UAV imagery 

The orthomosaic images of four bands (green, red edge, NIR, and red) were loaded to the 

R script, and further image processing was done using the R script and ArcMap. The 

study area is cropped from the orthomosaic images using the Area of Interest (AOI) shape 

file and indices were calculated. Figure 12 provides the results after indices calculation. 

3.4 Preprocessing of Sentinel-2A 

The Sentinel 2A data clipped to the study area using shape file and selected 8 bands for 

further process. For this study, nine calculated spectral indices (Figure 13) were created 

using the 8 bands and applied to the Sentinel-2A dataset as independent variables to 

improve the predictive ability of the datasets. 
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Figure 10: Soil sampling points of sampling campaign conducted on 16 November 2020, 
(Background imagery is from Sentinel 2A on 04 November 2020.) 

4. Ground truth data selection 

To obtain more accurate results, more ground truthing data are required as dependent 

variable. From the three available datasets, the third manual sampling had a greater 

number of points and diversity in values compared to the other two datasets. Soil sampling 

1 was conducted before the implementation of the patchCROP experiment and the 

number of samples was less compared to soil sampling 3. Soil sampling 2 was conducted 

for the Veris sensor data calibration and the number of samplings were also limited. 

Therefore, the manual soil sampling campaign 3 was used as training and testing data set 

to obtain accurate and precise results in this study. 

 

 

 

 

 

 

 

 

 

 

5. Modelling and prediction assessment 

Data preprocessing and RF modelling were carried out using R Script and ArcGIS. The 

following libraries are used for the study: - Caret, randomForest, Raster, rgdal, 

RStoolbox, ggplot. RF model were used to predict the SOC from the three datasets. 

According to Sothe et al., (2022) RF showed the highest predictive accuracy and 

robustness regarding model parameters. Ten-fold cross-validation was performed on the 

training set, which constituted 80% of the samples. Additionally, the testing set which 

accounted for the remaining 20% of the samples, was also used to evaluate the model's 

performance. For each dataset, the RF model was different. The prediction accuracy was 

evaluated by index of determination (R2CV), the Root Means Square Error of Prediction 

(RMSEPcv) of the ten-fold cross-validation. Prior to evaluating the predictive models, 

the normality of the distribution of the SOC contents was examined 
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III. RESULTS AND DISCUSSION 

1. Data inputs 

a) Veris MSP3 

Figure 11 represents the preprocessed results from Veris MSP3. After the interpolation 

of points, IR result is ranging from 470 to 530 and it measured the reflectance or 

absorption of light by soil particles. From the preprocessed results, a topographical pattern 

is clear on IR, pH and Deep EC.   

 

 

 
 

 

 

 

 

 

 

b) UAV  

Figure 12 shows the preprocessed results from UAV. The orthomosaic images have 

trajectory lines throughout the study area. After the problem analysis with the data 

collection team and Pix4D team, it was concluded that this might be due to solar radiation. 

If the solar radiation has changed significantly within the two flights, this stripe pattern 

can appear. Another reason could be the greater time difference between the neighbouring 

airlines on the western part as compared to the eastern part. If the cloud cover has changed 

between the start and the end of the flight, this will be visible in the striped pattern. In the 

eastern part, this is less pronounced as the time difference between neighbouring airlines 

is smaller. Two adjacent lanes pointing in the same direction (two lanes northbound, two 

lanes southbound, etc.). This could amplify the effect of the images changing when flying 

(EC – electrical conductivity) 
Figure 11: Variables measured by Veris MSP3 in raster form 
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towards the sun and when flying away from the sun. Hence, UAV data had errors during 

data collection.  

 

 

 

 

 

 

 

 

 

Figure 12: Spectral Indices from UAV 

c) Sentinel-2A 

Figure 13 shows the preprocessed results from Sentinel-2A. After indices calculation 

these indices are stacked together for retrieving the values using soil sampling 3. The BI, 

GNDVI and CI are clearly showing the patches in the study field.  

 

 

 

 

 

 

 

 

 

 

 

(VI - Vegetation Index, BI - Brightness Index, GNDVI - Green Normalized Difference Vegetation Index, DVI - 
Difference Vegetation Index, SAVI - Soil Adjusted Vegetation Index, NDRE - Normalized Difference Red Edge, 

IPVI - Infrared Percentage Vegetation Index, CI - Color Index, NDVI - Normalized Difference Vegetation Index) 
 

Figure 13: Spectral indices from Sentinel-2A 
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d) Suitability assessment of proximal (Veris MSP3) and remote sensing 
data (UAV, Sentinel-2A) to estimate SOC. 

After the preprocessing of Veris MSP3, UAV and Sentinel-2A, the UAV data was 

excluded for modelling due to the error. Veris MSP3 is a proximal sensing technology 

that measures soil electrical conductivity, which is influenced by factors such as soil 

texture, soil moisture, and SOC. Sentinel-2A can provide spatially explicit data on soil 

reflectance properties, which can be related to soil properties such as SOC. The advantage 

of remote sensing techniques is their ability to cover large areas quickly and non-

invasively, allowing for efficient monitoring of SOC over large regions. In this study, 

proximal and remote sensing data were used to estimate SOC. 

 

2. Data outputs 

a) Ground truth data 

Figure 14 is a density histogram, boxplot and a statistics summary of SOC content in the 

third soil sampling campaign within the study area comprising mean value, median, 

standard deviation (SD), kurtosis, skewness, coefficient of variation (CV), minimum, 

maximum, and standard error (SE). The median value of SOC % was found to be 0.9245, 

which indicates that the distribution of SOC % is slightly skewed to the right with a 

skewness value of 0.0542. The distribution is almost normal, as evidenced by the kurtosis 

value of 0.5857, which suggests that the tails of the distribution are not very heavy 

compared to a normal distribution. The range was found to be 0.8240, which means that 

the minimum and maximum values were 0.5420 and 1.3660, respectively. 

   

Figure 14: Density histogram, boxplot and statistics summary of SOC content (n=90) 

Parameters SOC% 

Mean 0.9423 

SE 0.0203 

Median 0.9245 

SD 0.1934 

Kurtosis 0.5857 

Skewness 0.0542 

Range 0.8240 

Min 0.5420 

Max 1.3660 

CV% 0.2052 
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3. Model structure 

To make the RF model, the spectral bands obtained from Veris MSP3 and Sentinel-2A, 

including the determined spectral indices were each linked to the SOC determined in the 

laboratory (soil sampling 3) using collected soil samples from the field. Total of 90 soil 

samples, spectral bands and indices are used in this model. The RF regression model used 

the randomForest R Script library. 80% of the data for training the model and 20% for 

testing. RF model used 100 trees and optimised the hyperparameters. The model to predict 

SOC was chosen by selecting the all covariates in this study. Biney et al., (2021) used all 

covariates for SOC prediction in his research. RF regression is performed to understand 

initial important scores, the features with lowest importance scores. Figure 15 and 16 

shows the covariate importance obtained by RF model. Based on the ten-fold cross-

validation prediction error, multiple RF models were fitted repeatedly using all 

covariates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Covariate importance (ranking of predictors) from RF model fitting Veris MSP3 
(%IncMSE: Mean Decrease Accuracy) 

Figure 16: Covariate importance (ranking of predictors) from RF model fitting Sentinel-2A 
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4. Creation of SOC maps from proximal and remote sensed data at the field 
scale. 

Figure 17 and 18 shows the SOC prediction using Veris MSP3 and Sentinel-2A. SOC 

contents ranged from 0.64% to 1.26 % from Veris MSP3 result and 0.59 % to 1.28% from 

Sentinel-2A. SOC distribution is varied for Veris MSP3 and Sentinel-2A.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Spatial SOC distribution maps on study area based on 
prediction using Veris MSP3 dataset 

Figure 18: Spatial SOC distribution maps on study area based on 
prediction using Sentinel-2A dataset 
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5. Evaluation of heterogeneity pattern of the SOC distribution at the field scale. 

Figure 19 and 20 shows SOC % in patchCROP study area. The study area included 30 

patches in a 30x30 meter. For Veris MSP3, the overall distribution of SOC percentage 

across the study area ranged from 0.64% to 1.26% with a mean of 0.95%. For Sentinel-

2A, the overall distribution of SOC percentage across the study area ranged from 0.59% 

to 1.28% with a mean of 0.91%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21, 22 and 23 represents the boxplot of SOC percentage from Veris MSP3, 

Sentinel 2A and soil sampling respectively. X-axis represents the patch ID and Y-axis 

represents the SOC%. Boxplots of SOC % by patch showed considerable heterogeneity 

across different patches. For example, patch 19 and patch 59 is showing considerable 

Figure 19: Spatial SOC distribution maps on patchCROP study area based on 
prediction using Veris MSP3 

Figure 20: Spatial SOC distribution maps on patchCROP study area based on 
prediction using Sentinel-2A 
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amount of SOC change in boxplot and also on the SOC distribution map. Similarly, from 

Veris MSP3 and Sentinel 2A SOC predictions, patches located on the south-west side 

have higher SOC% than central and north-east part.  The results suggest that the 

heterogeneity of SOC % across different patches in the study area might be related to 

topography, the type of crops cultivated. Patches located on south-west may have higher 

SOC percentages due to differences in soil moisture and temperature. These patterns of 

heterogeneity may have importance in crop production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Boxplot of SOC patches from Veris MSP3 at the patch scale 

Figure 22: Boxplot of SOC patches from Sentinel-2A the patch scale 

Figure 23: Boxplot of SOC patches from Soil sampling 3 at the patch scale 
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6. Comparison of proximal and remote sensed SOC estimations with ground 
truth measurements. 

According to Biney et al., (2021), when data are collected using various methods, 

sampling techniques, sample preparation prior to analysis, instrument requirements, 

analytical approaches, and algorithms, SOC prediction performance can be highly 

variable. In this study, comparison with the Sentinel-2A, the proximal sensing Veris 

MSP3 show the highest prediction as expected (RMSE = 0.11, R2 = 0.68) (Figure 24 and 

25). Although the RMSE and R2 value for this study was not as high as reported 

elsewhere, it is comparable to Vaudour et al., (2016) studies. 

 

In this study, the accuracy of SOC predictions using Sentinel-2A was the lowest 

compared with the Veris MSP3 data set. The low covariate importance of all Sentinel-2A 

bands and derived indices utilized with SOC may be one of the possible reasons of its 

model performance. The RF model can be influenced by the smaller number of training 

samples, date change and activities done in the field between the Sentinel-2A imagery 

and the soil data. The Veris MSP3 data were collected on the10th and 11th of March 2020, 

Sentinel-2A data were from 01 April 2020, and soil sampling were from 16 November 

2020. The time period between Veris MSP3 and Sentinel-2A data collection was to ensure 

bare soil for Sentinel-2A. According to Bartholomeus et al., (2011), existence of 

vegetation can sometimes affect the spectral reflectance, therefore soil properties 

prediction accuracy could be affected. During the time period of proximal sensing, the 

study area was covered with the cover crop and compost was applied and incorporated in 

the study area before crops were planted in the end of March 2020.  

 

The relatively low image resolution of Sentinel-2A might also be a challenging factor for 

prediction. Even though, compared to other method Sentinel-2A data set can be desirable 

due to its wide spatial coverage and short revisiting time. Additionally, Berger et al., 

(2012) mentioned in his study the enormously frequent data streams produced by satellite 

sensors can ensure that soil monitoring and mapping methods for greater areas may be 

built properly, quickly, and efficiently. 
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Figure 24: Spatial SOC distribution maps on study area based on prediction using 
Veris MSP3. Two statistical indicators (RMSE and R2 are shown) 

Figure 25: Scatter plots between the observed SOC values and predicted SOC values by 
RF model by using Sentinel-2A. Two statistical indicators (RMSE and R2 are shown) 
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IV. CONCLUSION 

The objective of the thesis was to compare the proximal (Veris MSP3) and RS (UAV and 

Sentinel-2A) technologies to estimate SOC at the field scale. This study compared and 

explored the ability to predict SOC in a field with SOC content using Veris MSP3, UAV 

and Sentinel-2A with spectral indices. For the prediction accuracy of SOC, proximal 

sensed (Veris MSP3) data obtained better model fitting, compared to RS (Sentinel-2A) 

data. After preprocessing UAV datasets were excluded from the modelling due to the data 

errors. The study indicates that both proximal and remote sensing technologies have their 

advantages when it comes to comparing and contrasting the two forms of measurement. 

For instance, Sentinel-2A offers a larger spatial coverage, while Veris MSP3 has the 

advantage of a reduced distance between the sensor and the soil surface, which can 

contribute to a more comprehensive retrieval of soil spectra. Proximal sensing will not 

substitute the use of UAV or satellite imagery for larger scale assessments but will greatly 

contribute to local management at small to medium scales. However, the comparison of 

the actual performance was challenging due to the time difference in ground truth data 

collection and the field activities done including compost application in the study field 

which may also have affected the changes in estimated and analysed SOC content. The 

prediction accuracy was low with RMSE value 0.11 and 0.13, R2 value 0.68 and 0.57 for 

Veris MSP3 and Sentinel-2A, respectively. The poor model performance may relate to 

the availability of limited training data. This leads to the conclusion that successful SOC 

prediction with proximal and remotely sensed technologies requires more soil samplings 

for training and data collection should be done on the same time. 

 

Future Work 

The limitations to this research are probably the use of a limited number of soil samples 

and time of data collection. The limited number of soil sampling and time difference in 

data collection may affect the RF model accuracy. More research is required to explore 

the potential of proximal and RS technologies for estimating SOC in fields with low SOC 

content. This could involve using various spectral indices, using different ML algorithms, 

and analysing both high and low SOC content fields to better understand the actual 

differences. 
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RS  Remote Sensing 

SAVI  Soil Adjusted Vegetation Index 

SD  Standard Deviation 

SOC  Soil Organic Carbon 

SVM  Support Vector Machine 

SWIR  Short-Wave Infrared 

UAV  Unmanned Aerial Vehicle 

UNEP  United Nations Environment Programme 

USGS  United States Geological Survey 

VI  Vegetation Index 

VNIR  Visible and Near-Infrared 

ZALF  Leibniz-Centre for Agricultural Landscape Research 
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Wyrażam zgodę na udostępnienie mojej pracy w czytelniach Biblioteki SGGW w tym w 
Archiwum Prac Dyplomowych SGGW 

 

 

I agree to share my work in the reading rooms of the SGGW Library, including the SGGW 
Theses Archive. 

 

Ich erteile meine Zustimmung zur Veröffentlichung meiner Arbeit in der Bibliothek der 
SGGW (Warschauer Naturwissenschaftliche Universität), einschließlich des Archivs der 
Diplomarbeiten. 

 

 

                  
................................................................. 

       (czytelny podpis autora pracy) 

       (legible signature of the author) 

                (lesbare Unterschrift des Autors der Arbeit) 
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