THE CHALLENGE

Sustainable agriculture of the future is characterised by innovative, multifunctional cropping systems. Diversification is one of the strategies to save resources and to minimize trade-offs within land use.

Despite possible negative environmental impacts such as biodiversity loss, the use of chemical-synthetic plant protection products (PPPs) is a common practice in conventional production systems. The regular use of PPPs increases the risk of herbicide-resistant weeds or epidemics of resistant pests. Moreover, the PPPs use in agriculture is confronted with a sinking level of social acceptance and is further being restricted in political and legal terms. Thus, the new EU strategy “From farm to fork” includes among others, the objective to reduce the use of high-risk PPPs by 50% until 2030. Additionally, climate change and increases in extreme weather events increase the risk of yield failure and production uncertainties in many locations. More diverse agricultural systems will enable to respond more flexibly to climate change, reduce dependence on external resources and improve the provision of ecosystem services.

By integrating innovative, sensor-controlled technologies and new approaches of design, modelling and simulation, cropping systems can be optimally adapted to the respective site conditions.

However, the vision of multifunctional farming systems can only get adopted if they represent a viable economic alternative to the prevailing agricultural systems. These effects also need to be investigated.

OBJECTIVES OF THE EXPERIMENT

• Reduction in the use of chemical-synthetic plant protection products (PPPs)
• Promotion of biodiversity and ecosystem services
• Increase in resource use efficiency
• Yield stability during extreme weather events
• Integration of innovative, sensor-controlled technologies

The applied PPP reduction strategies are variable and selected dynamically according the occurrence of weeds, pests and diseases for the respective crops. This corresponds to the basic principles of agricultural system research.

By the small-scale diversification and the integration of landscape elements, such as flowering strips, positive effects regarding beneficial organism and synergies between environment, crops and soil are expected and will be investigated.

CO-INNOVATION AND CO-DESIGN

As this is an on-farm experiment in cooperation with the agricultural enterprise Komturei Lietzen, practical requirements can be integrated right from the start. Participatory approaches are implemented to fully integrate farmer’s needs and practical feasibility.

Agricultural Enterprise: Komturei Lietzen Gmbh

• Modern agricultural enterprise for market fruits in Brandenburg
• 24 employees
• Farm size: 4,840 ha, of which 2,120 ha are arable land, 100 ha are grassland and 2,320 ha are forest, 275 ha are waterbody infrastructure and 25 ha are building area

Patches
• all machines with RTK steering systems for Controlled Field Traffic
• all crop residues remain in the field for organic matter formation
• conservation tillage with mulch sowing
• site-specific crop management

Precision farming in liming, green manuring, N-fertilisation, plant protection measures and sowing

TEAM

Increasing the resource use efficiency

Prof. Dr. Frank Ewert, Scientific Director of ZALF

media@komturei-lietzen.de
www.komturei-lietzen.de

LEIBNIZ CENTRE FOR AGRICULTURAL LANDSCAPE RESEARCH (ZALF)

Three land use intensities:
1. Crop rotation with conventional PPP application
2. Crop rotation with reduced PPP application
3. Crop rotation with reduced PPP application and additional landscape elements (flower strips)

LEIBNIZ CENTRE FOR AGRICULTURAL LANDSCAPE RESEARCH (ZALF)

The challenge of the future: sustainable agriculture

EXECUTIVE BOARD

Prof. Dr. Frank Ewert (Scientific Director)
T +49 33432 82205
F +49 33432 82223
Eberswalder Straße 84
15734 Müncheberg
http://www.zalf.de

PUBLIC RELATIONS

Hendrik Schneider
public.relations@zalf.de
T +49 33432 82205
F +49 33432 82223

RESOURCE & INFRASTRUCTURE (status as of December 2020)

325 employees
Total annual budget approx. 34.1 million € (from which 11.6 million € are third-party funds)
Core financing by the German Ministry of Science, Research and Culture (MWK) and the Federal Ministry of Food and Agriculture (BMEL)
Interdisciplinary research teams
Involvement in national and international networks
Transdisciplinary, application-oriented research
Systematic promotion of young researchers
Family-oriented personnel management
Scientific meeting centre
Research Infrastructure (Joint Lab) AgroScapeLab Quillow
Platform for openly accessible landscape research data at ZALF Open Research Data – http://open-research-data.de

PHOTO CREDITS

Inside page: Lars Richter, ZALF / Photo Prof. Ewert: Anna Tiessen
Front page: .marqs, photocase.de / Hendrik Schneider, ZALF
For more information go to: www.landschaftslabor-patchcrop.de

For more information go to: www.landschaftslabor-patchcrop.de
CONCEPTUAL APPROACH

• Agricultural system trial at the landscape level
• Creation of patches, i.e. the division of the field into 30 small, structured field units of 0.5 ha each, optimally adapted to the soil properties
• Site-selected crop rotations based on yield potential zone, expert knowledge and crop rotation restrictions
• Innovative, diversified cropping systems replace monoculture
• Possibilities of a stepwise PPP reduction, which can be supported by robotics (especially mechanical weed control and point applications of PPPs through UAVs)
• Increasing amount of scientifically robust and accurate data from multiple disciplines

AVAILABLE TECHNOLOGIES AND MEASUREMENTS

• LoRa multisensor systems (soil moisture, soil temperature and bulk soil electrical conductivity) for Internet of Underground Things
• Continuous recording and monitoring of various parameters across all crops: yield, plant stand, leaf area index, NDVI, plant height and soil nutrients
• Weather stations with LoRa technology
• UAVs for remote sensing (multi-spectral and RGB) & Soil scanners for proximal sensing
• Biodiversity monitoring (natural enemies, birds)
• Pest and weed assessment and scoring

SPECIALS FEATURES

• 10 years runtime
• Interdisciplinary research approaches and team structure
• Integration of new technologies for small-scale management and data acquisition (robotics, sensors, drones, machines) and linkage to technological feasibility and the development of field robotics

UNIQUE RESEARCH POSSIBILITIES IN EUROPE

• We cordially invite the scientific community to take action in this interdisciplinary and innovative project and engage the collaboration with research from many disciplines to continue working on the development, support and implementation of new digital technologies in patchCROP. For this purpose, we are looking for partners from the fields of robotics, mechanical engineering, machine learning / artificial intelligence, irrigation systems, pest monitoring as well as weed control and weed removal.
• ZALF also offers bachelor, master and doctoral theses in various research projects taking place in patchCROP.

CONTACT

Dr. agr. Kathrin Grahmann (scientific coordinator)
T +49 33432 82 142 | kathrin.grahmann@zalf.de

Felix Gerlach (farm manager / Komturei Lietzen)
T +49 33470 4960 | info@komturei-lietzen.de

LANDSCAPE LABORATORY »patchCROP«

SITE INFORMATION

• 2 dominant soil types: Haplic and Albic Luvisols
• Annual precipitation: 560 mm (1996–2008)
• Annual average temperature: 9.6 °C

CULTIVATED CROPS IN PATCHES (2020)

- Lupin
- Corn
- Phacelia
- Sunflower
- Summer oats
- Soybean

LEGEND

- Weather station
- Flower strips

PROJECT WEBPAGE

www.landschaftslabor-patchcrop.de

patchCROP ON VIDEO