SharePoint
 

Navigationslinks überspringenProjekt-IPP-Optimal N

​​​​​​​​​​​​​​IPP-Optimal N​

 

Bodenprobenanalyse verschiedener Stickstofffraktionen in Boden und Pflanze
Bodenprobenanalyse verschiedener Stickstofffraktionen in Boden und Pflanze, © Jarno Müller/ZALF

ZALF finanziertes Schwerpunktprojekt mit dem Titel: Optimale Stickstoffversorgung für Agrarlandschaften der Zukunft: digitale Technologien zur Optimierung von trade-offs.

Verantwortliche Wissenschaftlerinnen:

  • Maire Holz
  • Mathias Hoffmann
  • Heidi Webber
  • Kathrin Grahmann

Zeitraum: 2021-2024.

Fokus ist die Quantifizierung von Stickstoff Dynamiken- und Verlusten in diversifizierten Anbausystemen auf Parzellen-, Feld- und Landschaftsebene. So sollen unter anderem Beziehungen zwischen Punktfeldmessungen mit Umweltüberwachungsinstrumenten und Technologien der Nah- und Fernerkundung hergestellt werden, um die Dynamik der neuen kleingeteilten Anbausysteme in Bezug auf Stickstoffnutzungseffizienz, Auswaschungs- und gasförmige N-Verluste zu quantifizieren.

In diesem Projekt arbeiten und forschen die Doktoranden

  • Isabel Zentgraf
  • Tawhid Hossain
  • Ines Astrid Tougma

Work packages IPP 1
Arbeitspakete, Projektmitarbeiter und Aufgabenbeschreibung im Integrated Priority Project: Optimal Nitrogen​, ​​​© Maire Holz​

 

Update zu laufenden Projektaktivitäten

The Optimal N project combines the expertise of 3 working groups at ZALF, combining three work packages (WP1-3) to derive a holistic understanding of the N transformation processes with the aim of informing improved cropping system design and management. The work includes experimentation using 15N isotopes to trace the fate of N within a cropping season, proximally and remotely sensed data improve the understanding of drivers of spatial heterogeneity and development and application of an integrated crop-soil model to assess options for more efficient N management.

 

WP-1

Objective of WP1

This work package builds on a holistic process understanding of N transformations. The aim is to quantify small-scale variability of N-transformations and –loss processes within agricultural landscapes and understand their driving factors. This will be done by combining 15N tracer techniques, N2O emission measurements and specific on-site plant and soil analyses.

Field activities

Biomass, root and soil sampling until 90 cm depth as well as N2O emission measurements are conducted from 2021-2024; 15N tracer techniques are carried out until mid of 2023. Six patches with different soils values and crops are covered.

Image fieldwork

Bodenprobenanalyse verschiedener Stickstofffraktionen in Boden und Pflanze
Experimental set-up of micro-plots and N2O emission measurements in rapeseed patch, ​​​© Isabel Zentgraf​
​ ​ ​

Dissemination of ideas and results

Year 2022

 

WP-2

Objective of WP2

The core objective of WP2 is the application of digital tools, specifically proximal and remote sensing, for better understanding and monitoring of N dynamics in newly designed field arrangements of patchCROP.

Field activities

Extensive spatio-temporal soil and biomass sampling has been conducted through 2021-2023 cropping season to develop methods for monitoring N dynamics across space and time. We have covered 7 crops (rye, barley, wheat, oat, rapeseed, sunflower, maize) in six patches. Furthermore, STENON proximal sensor as well as Satellite and UAV imagery are integrated with field data to develop methods to monitor spatiotemporal N dynamic in a heterogeneous cropping system.

Image fieldwork

Bodenprobenanalyse verschiedener Stickstofffraktionen in Boden und Pflanze
Bulk density campaign in March 2022​, ​​​© Tawhid Hossain
​ ​ ​

Dissemination of ideas and results

 

WP-3

Objective of WP3

WP3 aims to include nitrogen transformations in a state-of-the-art soil organic carbon model coupled with a cropping system model to assess crop management strategies at the field scale that maximize crop yield while minimizing nitrogen losses, accounting for soil heterogeneities and uncertain weather conditions.

Field activities

The integrated soil-crop model will be parametrized and validated with data collected in WP1 and WP2 as well as data on crop development stages and microbes C and N contents, collected in the patchCROP experimental site.

 

 

Die Partner